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ABSTRACT 

 Sensing devices developed upon resonant microelectromechanical and 

nanoelectromechanical (M/NEMS) system technology have become one of the most attractive 

areas of research over the past decade. These devices make exceptional sensing platforms because 

of their miniscule dimensions and resonant modes of operation, which are found to be extremely 

sensitive to added mass. Along their unique sensing attributes, they also offer foundry compatible 

microfabrication processes, low DC power consumption, and CMOS integration compatibility. In 

this work, electrostatically and piezoelectrically actuated RF MEMS bulk resonators have been 

investigated for mass sensing applications. The capacitively-transduced resonators employed 

electrostatic actuation to achieve desired resonance mode shapes. These devices were fabricated 

on silicon-on-insulator (SOI) substrates with a device layer resistivity ranging from 0.005 Ω cm to 

0.020 Ω cm. The electrode-to-resonator capacitive gap was defined by two different techniques: 

oxidation enabled gap reduction and sacrificial atomic layer deposition (ALD). For oxidation 

enabled gap reduction, a hard mask composed of silicon nitride and polysilicon is deposited, 

patterned, and defined using standard MEMS thin-film layer deposition and fabrication techniques. 

The initial lithographically-defined capacitive gap of 1 μm is further reduced to ~300 nm by a wet 

furnace oxidation process. Subsequently, the reduced gap is transferred to the device layer using a 

customized dry high-aspect-ratio dry etching technique. For sacrificial approach, a ~100 nm-thin 

ALD aluminum oxide sidewall spacer is chemically etched away as the last microfabrication step 

to define the ~100 nm capacitive gap. Small capacitive gaps developed in this work results in small 

motional resistance (Rm) values, which relax the need of the read-out circuitry by enhancing the 
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signal transduction. Piezoelectrically-actuated resonators were developed using thin-film bulk 

acoustic resonant (FBAR or TFBAR) and thin-film piezoelectric-on-substrate (TPoS) technologies 

with reported Q factors and resonant frequencies as high as 10,638 and 776.54 MHz, respectively, 

along with measured motional resistance values as low as 169Ω. To the best of our knowledge, 

this work is the first one that demonstrated TPoS resonators using LPCVD polysilicon as an 

alternative low loss structural layer to single-crystal silicon with Q factors as high as ~3,000 (in 

air) and measured motional resistance values as low as 6 kΩ with an equivalent acoustic velocity 

of 6,912 m s-1 for a 7 μm thick layer. Polysilicon based TPoS single devices were measured with 

the coefficient of resonant frequency of -3.77 ppm/°C, which was the lowest ever reported for this 

type of devices. Also a novel releasing process, thin-piezo on single crystal reactive etched 

(TPoSCRE), allows us to develop of TPoS resonators without the need to SOI wafers. The 

fabricated devices using this technique were reported with Q factor exceeding ~1,000 and 

measured motional resistance values as low as 9 kΩ.  

 The sensitivity of a fourth-order contour mode ZnO-on-SOI disk resonator based mass 

sensor was determined by performing multiple depositions of platinum micro-pallets using a focus 

ion beam (FIB) equipped with gas injection system on strategically-chosen locations. It was found 

out that the sensitivity of the resonator on its maximal and minimal displacement points was of 

1.17 Hz fg-1 and 0.334 Hz fg-1, respectively. Also, the estimated limit of detection of the resonator 

was found to be a record breaking 367 ag (1 ag = 10-18g) compared to devices with similar modes 

of resonance. Lastly, a lateral-extensional resonator was used to measure the weight of HKUST-1 

MOF crystal cluster. The weight of it was found to be 24.75 pg and 31.19 pg by operating two 

lateral resonant modes, respectively. 
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CHAPTER 1 INTRODUCTION 

 In order to have a better understanding of our world, we have developed technology that 

can translate the unknown into simple bits of knowledge. Such technology has enable us to make 

smarter choices and find solutions to problems that were otherwise impossible to solve. One of the 

milestones of sensing of technology was the oxygen probe by Professor Leland C. Clark in 1956. 

This device was able to monitor and control of blood and tissue oxygen tensions circulating in 

heart-lung machines enabling safer and more containable open heart operations[1]. Few years later, 

he expanded the idea of the oxygen sensor into a more user friendly enzyme-based transducer 

known as “enzyme electrodes” in 1962 [2], thus allowing millions of diabetics to monitor their 

own blood-sugar levels. Thereafter, more technological advances in sensing technology, for 

numerous medical applications, branched out from these concepts helping millions of people to 

live a better life. Since the early 1970s, many astonishing advances in the field of micro-electro-

mechanical-systems (MEMS) have enabled the exploration of transduction mechanisms that take 

advantage of mechanical energy primarily based on the mechanical phenomena. As a result, an 

innovative family of chemical and biological sensors has rapidly emerged. One of the most popular 

sensing methods for chemical/biomedical sensors is the detection through the mass loading effect. 

The concept of mass sensing using MEMS devices was developed shortly after the evolution of 

the atomic force microscopy (AFM) in the early 1980’s. By monitoring deflection and resonant 

frequency of a microfabricated cantilever, the AFM is capable of measuring ultra-small forces 

exerted towards a micro-cantilever down to a single atom [3]. Due to incredible sensitivity 

demonstrated by these microfabricated cantilevers, researchers around the world began to exploit 
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those characteristics especially for mass sensing applications. In many fields, very sensitive 

transducers are needed to quantify ultra-small amounts of loaded mass for detection purposes. As 

technology advanced, more MEMS transducers were developed for this purpose with different 

ranges of sensitivity. Now days, to build a mass sensor, a large number of MEMS transducers are 

available and they can be selected depending on the weight and size of the targeted physical, 

chemical, or biological stimuli. MEMS single-clamped or double-clamped suspended beams, and 

released diaphragms are known to be the most sensitive transducers up to date. When a MEMS 

device becomes a physical transducer, it can be used directly   sense a load in a label-free 

environment. For targeted detection, a receptor layer is strategically functionalized in a way that 

measurable output signals can be produced in response to specific stimuli through which ultra-

sensitive mass sensors have already been demonstrated [4]. But the wide acceptance of many of 

them has been hindered by the complexity of their testing schemes and/or fabrication processes. 

1.1 MEMS Sensor 

 

Figure 1.1 Illustration of basic MEMS detection. 
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A MEMS sensor can be defined as a transducer that converts an unknown physical quantity 

using known electromechanical mechanisms into quantifiable data. As seen in Figure 1.1, a 

transducer responds to a stimuli from an unknown physical quantity and produces electrical 

response that can be interpreted as data using a signal processing unit. For targeted applications, a 

tailored structure known as the functionalized layer is used. 

There are a large number of commercially available MEMS devices such as accelerometers, 

pressure sensors, gyroscopes, temperature sensors, frequency reference oscillators, and mass 

sensors, just to name a few. Most of these devices are designed to measure fundamental physical 

quantities as listed in Table 1.1. 

Table 1.1 Fundamental Physical Quantities. 

Base quantity Symbol Si unit 

Mass m Kilogram (kg) 

Length l Meter (m) 

Time t Second (s) 

Electric current I Ampere (A) 

Temperature T Kelvin (K) 

Amount of substance n Mole (mol) 

Luminous Intensity L Candela (cd) 

   

MEMS devices are fabricated using microfabrication techniques that are widely used in 

semiconductor manufacturing. The major techniques for microfabrication are lithography, film 

deposition, dry and wet etching, doping and polishing. The complexity of the micro-fabrication 

can be measured by the number of processing steps needed to fabricate the device. Some simple-

to-fabricate devices such as chemiresistor gas sensors can be composed of a single 
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microfabrication step. At the other end, mass resonant sensors are known to be very complex 

devices that often tend to require multiple microfabrication steps. 

1.2 Resonant MEMS Mass Sensors 

A resonant MEMS mass sensor is a transducer that produces a frequency response when 

added mass changes the equilibrium state of the transducer. This data can be obtained and process 

by electronics, then it can be analyzed and interpreted using analytical techniques. The resulting 

signal is used to make appropriate determination to the change of mass on the transducer. As shown 

in Figure 1.2, there are three major applications that resonant mass sensors have been used for. 

 

Figure 1.2 Three major application that resonant sensors are commonly used for. 

There is a large well-known family of resonant sensors that can be categorized in two major 

transduction modes: piezoelectric and capacitive. Piezoelectric transduction allows electrical 

energy to be converted to acoustic energy mechanically via a polarized layer (piezoelectric 

material), and vice versa. Capacitive transduction enables electrical energy to be converted into 
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acoustic energy via a variable potential in a dielectric gap, and vice versa (see chapter 2 for more 

detail analysis of both transduction modes). Both modes have their advantages and disadvantages 

which can play a very important role while determining the best suited application they can be 

used for. 

1.3 CMOS-MEMS Integration 

 

Figure 1.3 Common MEMS-CMOS integration techniques: (a) hybrid integration and (b) 

monolithic integration. 

CMOS compatible technology is widely acclaimed because MEMS devices are 

manufactured using batch fabrication techniques, and integrated with IC interconnects and read-

out circuits. The most common CMOS-MEMS integration technique consists of processing both 

chips separately followed by wirebonding. This technique is known as hybrid integration. It is not 

a practical approach because this technique increases the manufacturing cost while demanding 

special packaging techniques. Such drawbacks delay the commercialization of this type of 

technology. Therefore, a more compact approach where both a MEMS device and its read-out 

circuitry that can be integrated in the same chip is preferred. Combining both the MEMS devices 

and the readout circuit in the same die results in lower packaging cost and increases the circuit 

performance. This is achieved because less number of off-chip electrical connections are needed. 
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This technique is also known as monolithic integration. There are three approaches that are widely 

used to integrate MEMS devices with IC components using monolithic integration: pre-CMOS, 

intra-CMOS and post-CMOS processing. 

For pre-CMOS processing, the MEMS device is completely fabricated before the CMOS. 

The advantages of this process is that the MEMS device can be fabricated using very complex 

techniques that might not be otherwise CMOS compatible. In addition, high temperature processes 

can also be employed. However, integrating CMOS with prefabricated MEMS devices is very 

challenging. That is because some of standard CMOS processes need to be modified in order to 

prevent damaging to the prefabricated MEMS structure. Which makes it very challenging and 

expensive.  

On the other hand, intra-CMOS is an approach where both the MEMS and CMOS can be 

fabricated in parallel. This approach is ideal because the overall fabrication becomes cheaper and 

it can also be adapted for batch production using same foundry. However, this approach has a lot 

of design limitations that often requires extensive modifications to existing CMOS fabrication 

standards. In some cases, material modifications are needed, which limits the best achievable 

microsystem performance. 

Finally, post-CMOS is an approach where the MEMS is fabricated after the CMOS has 

been created. This approach is widely known to have great advantages such as: the fabrication of 

the CMOS and the MEMS using different foundries, the integration of MEMS without affecting 

standard CMOS fabrication techniques, and the MEMS can be fabricated on top of the CMOS 

reducing the overall size of the device and parasitics. The disadvantages of this approach often 

occur when the deposition temperature of the structural layer is too high which can alter the 

performance of CMOS circuitry underneath [5]. 
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1.4 Previous Work on Resonant Mass Sensors 

Resonant mass sensors have gained a great deal of interest over the years due to their 

intrinsic high sensitivity and wide deployment in numerous apparatus and instruments. These 

devices have been implemented in various disciplines of science and technology for mass-loading 

applications, especially for biosensors [6]. Some of the most successful resonant mass sensing 

technologies in the recent years are: quartz crystal microbalance (QCM), bulk acoustic (BAR), 

surface acoustic wave (SAW) resonators, and MEMS cantilever.  

In 1959, Sauerbre derived a series of equations that predicted the changes in the resonant 

frequency correlated to mass-loading on piezoelectric crystals [7]. Ever since, scientist around the 

world began to explore the mass loading effects on piezoelectric transducers. QCM shear-mode 

resonators were among the first devices ever being explored because they are built on a custom 

cut, thin piezoelectric quartz plates with coated electrodes. When actuated, it generates an acoustic 

wave that propagates perpendicular to the crystal surface. By monitoring the frequency shift, the 

loaded mass can be determined by Sauerbre’s equation (1.1): 

∆𝑚 = −𝐶 ∗ ∆𝑓    (1.1) 

where ∆𝑚  is the change of mass, 𝐶  is the mechanical and electrical characteristics of the quartz 

crystal and ∆𝑓 is the change of resonance frequency.   

QCM is an attractive technology because it can be cheaply fabricated in mass quantities. 

Even though this technology has been widely used for mass sensing applications, its mass 

sensitivity is very limited due to the relative large sizes of the piezoelectric quartz which limits its 

working frequency. Therefore, as observed in equation (1.1), the working frequency is directly 

correlated to the mass sensitivity. For these devices, it is difficult to achieve resonances higher 
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than 10 MHz in most cases [8].   Also, relative low Q factors (<200) are achieved due to the losses 

of its piezoelectric transduction mode, which leads to lower mass sensitivity and resolution. 

Bulk acoustic wave (BAW) technology emerged as an alternative solution to address 

QCM’s low resonant frequencies, making it a stronger candidate for mass applications [9]. The 

structure and working principle of BAW devices are very similar to those of the QCM. The major 

difference is that BAW devices use a deposited thin piezoelectric layer (ZnO or AlN) with nominal 

thickness of 100 nm-2 μm sandwiched between two electrodes, which is thinner than the quartz 

crystals allowing higher working frequencies. This transduction technique allows the resonator to 

have less acoustic energy losses compared to quartz crystal technology. As a result, a slightly better 

Q factor is obtained. Due to the similar working principle of BAW and QCM devices, the mass 

sensitivity can be closely governed by equation (1.1). Aside from their greatly increased resonance 

frequencies, BAW resonators with frequencies in the GHz range have exhibited sensitivity up to 

three orders of magnitude higher than that of the best QCM devices. Some of the most commonly 

used BAW resonators for mass sensing applications are solid mounted resonators (SMR) [10] and 

film acoustic resonators (FBAR) [11]. However, because BAW resonators require multiple layers, 

the micro fabrication of these devices tends to be quite cumbersome. Also, similarly to QCM, only 

moderate Q factors (<500) can be achieved due to the losses of its piezoelectric transduction mode. 

Additionally, liquid media sensing applications are very limited because film squeeze damping 

further degrades the Q factor, which leads to lower mass sensitivity and resolution. 

Surface Acoustic wave (SAW) sensors emerged as a solution for highly sensitive detection 

in liquid media biomedical [6]. The mass sensitivity of these devices can be modeled by the 

following equation derived from perturbation theory for an acoustically thin, perfectly elastic film: 

∆𝑓 ≅ (𝑘1 + 𝑘2)𝑓0
2𝑚𝐴−1   (1.2) 
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where ∆f is the frequency shift due to mass loading; k1 and k2 are the piezoelectric electrical and 

mechanical characteristics; fo is the nominal resonance frequency, m is the added mass, and 𝐴 is 

the sensing area of the device. 

 SAW resonators generate and detect acoustic waves at resonance using two interlocking, 

comb-shaped, metallic structures known as interdigital transducers (IDT) on the surface of the 

piezoelectric film or substrate. This allows the acoustic wave energy, when electrically actuated, 

to be strongly confined on the surface of the device regardless of its thickness, thus minimizing 

induced damping introduced by liquid media [12]. Therefore, mass sensors have been reported 

with high working frequencies between 100 MHz to low GHz [13]. However, the SAW technology 

offers relatively limited operation frequency range, as excessive scaling of interdigital transducer 

pitch size is required to reach GHz frequencies, which in turn limit the best achievable sensitivity. 

Also, similarly to other piezoelectric technologies, the Q factor tends to be relatively low (<1000), 

therefore affecting the mass resolution of these devices. 

M/NEMS technology has enabled us to develop mass sensors that rely on the mechanical 

phenomena [3]. This technology has been extensively studied for the past few years because it has 

the potential to yield the most sensitive devices up to date.  There are two important M/NEMS 

mass sensor devices: M/NEMS beam and MEMS bulk-mode plate sensors. MEMS beam mass 

sensors emerged right after the development of micromachined cantilevers in the 1980’s [14]. 

These devices are known as the most sensitive devices up to date with a record setting mass 

resolution of 1.7 yg (1 yg=10-24 g) at 2GHz in vacuum, using a suspended clamped carbon 

nanotube [15]. There are two common modes of sensing for beam sensors: static and dynamic. In 

static mode, the target analyte causes the beam to bend due to surface stress, whereas the surface-
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attached analytes cause a shift in the beam’s resonant frequency due to mass loading for the case 

of dynamic mode. 

For mass sensing applications, dynamic mode is the most widely used sensing technique 

[16]; mass-loading effect can be detected by monitoring the mechanical resonance frequency 

change of the beam resonator given by: 

∆𝑓 ≅
𝑓𝑛

2𝑚𝑒
∆𝑚   (1.3) 

where ∆𝑚  is the change of mass, ∆𝑓 is the measurable frequency shift, and 𝑚𝑒 is the effective 

mass of the resonator (also known as the dynamic mass).  

As observed in equation 1.3, to be able to achieve the highest possible sensitivity, an 

extremely tiny beam needs to be considered in the design. This however makes the sensor more 

susceptible to external perturbations caused by the environment, thus demanding operation under 

ultra-high vacuum. Therefore, new ideas been proposed to solve this issue such as the 

implementation of buried micro-channels inside a suspended beam [4]. This technique offers a 

way to detect bio-molecules in liquid media inside the beam resonator while operating under ultra-

high vacuum test environments. There are two main actuation methods to drive beam resonator 

into resonance, which are piezoelectric and electrostatic. Piezoelectric beam resonators use only 

signals in the electrical domain for actuating and sensing the changes of frequency in the device. 

However, just like previously reviewed piezoelectric devices, the response is restricted by the 

piezoelectric materials’ mechanical and electrical material properties. For electrostatic actuation, 

an AC voltage drives directly the beam into resonance and optical detection methods track the any 

changes in the mechanical resonant frequency. Optical detection, consisting of a laser diode 

focused on the suspended beam, tracks any changes in the resonant frequency caused by mass 
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loading detected by a sensitive photodetector (PSD). However, this technique has a limited cutoff 

frequency (<1GHz) due to the response time of the optical detector and readout circuit. Also, 

M/NEMS beam devices with the nano-scale geometry not only demands costly and mass-

production incompatible processes, but also require in vacuum operation to mitigate the air 

damping effect. 

MEMS bulk-mode plate sensors have become an alternative to overcome the limitations 

imposed by M/NEMS beam resonant technology [17]. Similarly to M/NEMS beam sensors, there 

are two common mode of sensing: static and dynamic. Dynamic mode is the most interesting 

method, which employs the mass-loading effects. There are also two common transduction 

methods, which are piezoelectric and electrostatic actuation [18]. Piezoelectric actuation is similar 

to that of M/NEMS beam sensors where the devices actuation and detection are restricted by the 

piezoelectric material properties. On the other hand, electrostatic actuation can be monitored by 

electrical means, which make these sensors fully scalable. Capacitively-transduced resonators also 

offer high resonant frequencies (>100 MHz) with high factors (>10,000) at atmosphere pressure 

[19]. Meanwhile, relatively large capturing area due to larger surface area than M/NEMS beam 

sensors allows quicker detection time [20], and different resonant bulk modes of actuation provide 

good sensitivity in liquid sensing environments with and without integrated microchannels [21]. 

Also, newly introduced thin-film piezoelectric-on-substrate resonator (TPoS) devices have a great 

potential to be utilized in ultrasensitive mass sensing applications. These devices are based on 

FBAR technology; however, they are strategically coupled with low loss substrates that have 

higher acoustic velocities [22]. This results in an equivalent acoustic velocity much higher than 

typical piezoelectric devices. Therefore, this devices have high Q factors and resonant frequencies, 

and a low motional resistance comparable to capacitive-transduced resonates. To the best of our 
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knowledge, this dissertation is the first one study the effects of mass loading on TPoS based 

resonators for mass sensing applications. 

In the past few years a great deal of effort has been devoted to study the sensing 

characteristics of most of the previously mentioned technologies using direct metal write 

techniques such as the focus ion beam (FIB) platinum nano/micro pellet depositions, and other 

physical deposition techniques such as e-beam evaporation and sputtering. Using these techniques, 

research groups have been able to obtain important sensing parameters such as the mass sensitivity 

and resolution as summarized in Table 1.2. 

Table 1.2 Performance Comparison of Several State-of-the-art Sensing Technologies 

Device Resonant 

Frequency (MHz) 

Localized Mass 

Sensitivity (kHz pg-1) 

Mass 

Resolution (fg) 

QCM [23, 24] 5  100 

FBAR [25] ~2300  9 

SAW [26] 200 0.0009 3000 

MEMS Microcantilever [27] ~0.350 0.878  

NEMS Nanocantilever [28] 13 5100 0.039 

Capacitive Disk [29] 132 31.5 0.130 

Capacitive Bar [30] 51 100 0.5 

ZnO-on-Si Disk (This work) 85 1.140 0.367 

ZnO-on-Si 

 Square  (This work) 

88.61 0.103 50.8 

ZnO-on-Si 

 Square  (This work) 

150.87 0.191 10.9 
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CHAPTER 2 BACKGROUND AND THEORY  

 Recent advancement in microfabrication and lab-on-a-chip CMOS integration technology 

have enable many researchers to develop devices, such as MEMS resonators, to measure very 

small amounts of mass. These devices have brighten the way for the development of new 

applications in the fields of science and technology. There three very important parameters used 

to design an ultrasensitive MEMS resonating mass sensors which are: the resonant frequency of 

the device, the dynamic mass of the resonant mode, and the Q factor at resonance. There are infinite 

number resonant frequencies in an elastic material (or resonant modes), this work focuses only in 

the extensional lateral and contour modes for both disk shape and square plate resonators. The 

dynamic mass is a very important parameter for determining the sensitivity of the device because 

it analytically approximates the amount effective mass for the resonant mode of operation. The Q 

factor determines the limit of detection (LOD) of the device given a measured or theoretical 

sensitivity value.  As previously covered in Chapter 1, there are two strong transduction candidates: 

thin-film piezoelectric and capacitively transduced resonators, both technologies have been 

explored in this dissertation. 

2.1 Thin-film Piezoelectrically Transduced Resonators 

Thin-film piezoelectric MEMS resonators consist of a suspended structure that is 

composed of a piezoelectric material such as ZnO, AlN, and PZT embedded between two parallel 

thin film patterned electrodes. The suspended structure is anchored to the body of the device and 

actuated through a structure known as tethers as illustrated in Figure 2.1. When an AC signal is 

applied to the driving electrode and it matches the natural resonant frequencies of the piezoelectric 
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layer, a mechanically deformation is induced (also known as indirect piezoelectric effect). The 

resultant deformation is proportional to the equivalent longitudinal acoustic wave propagation 

(quazi-longitudinal acoustic velocity or Cql) within the piezo-material crystal layer. The 

mechanical deformation during resonance directly affects the internal polarization of piezoelectric 

layer resulting in an electric response (also known as the direct piezoelectric effect) that can be 

extracted and detected from the sensing electrode. 

 

Figure 2.1 3D illustration of a 2-port thin-film piezoelectric square plate resonator with drive and 

sense ports. 

2.2 Piezoelectricity Effect 

 Piezoelectricity is defined as a linear interaction between mechanical and electrical systems 

in non-centric crystals or similar structures [31]. A material that expresses piezoelectric 

characteristics produces an output electrical signal when an external mechanical stress is applied 

to it. This happens because the internal electric polarization from piezoelectric materials is 

perturbed by mechanical means and an electrical response is generated because of the induced 

dielectric displacement. The amount of electric discharge is directly proportional to the strength of 

the mechanical perturbation on the piezoelectric material. This phenomenon is known as direct 
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piezoelectric effect. Similarly, when an electric field is applied across the piezoelectric material a 

mechanical deformation is induced. The mechanical deformation is directly proportional of the 

strength of the electric field. This phenomenon is known as converse (inverse) piezoelectric effect. 

 

 

Figure 2.2 Illustration of the direct and converse piezoelectric effects [32]. 

 Ever since the discovery of the piezoelectric properties of quartz by Pierre and Jacques 

Curie in the 1980’s, the study of piezoelectric materials and applications of piezoelectricity have 

changed the course of technology. Currently, advances in the field of microfabrication technology 

and a wide choice of piezoelectric materials have enable us to develop sophisticated devices.  Most 

of them have the ability to convert mechanical strain into an electrical signal when they are applied 

as a stress sensor, similarly they can act as resonant transducer as illustrated in Figure 2.2. There 

is a vast market that utilizes the unique electrical and mechanical properties of piezoelectricity to 

create devices that are in huge demand the field of engineering as seen in Figure 2.3. One of the 

benefits of piezoelectric technology is the ease of fabrication of a great range of device sizes down 

to few microns. In addition, they can be integrated with today’s semiconductor technology. In 

today market, technologies using the direct piezoelectric effect encompasses the majority 

commercially available piezoelectric devices. Not far behind, thanks to the advances in field of 

MEMS microfabrication technology, the converse piezoelectric effect based piezoelectric resonant 
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technology is advancing fast towards the markets as the strong new comer for numerous 

applications. 

 

Figure 2.3 Categories of MEMS device technologies based on both direct and converse 

piezoelectric effects. 

2.3 Piezoelectric Materials for MEMS Applications 

 The discovery of a vast number of piezoelectric materials have enabled us to rapidly 

advance the field of study for piezoelectric devices. Therefore, a bloom of MEMS devices using 

the piezoelectric effect as their main mode of actuation has sparked a great number of applications 

in the fields of science and technology. Piezoelectric materials belong to a crystal group that lacks 

a center of symmetry. When an applied stress or electric filed yields an asymmetrical ionic 
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displacement that causes electrical charges or lattice deformation, respectively [32]. There are 

many natural and synthetic materials that exhibit piezoelectric characteristics that can be branched 

out in two major categories, piezoelectric ceramics and piezoelectric crystals. Naturally, the 

piezoelectric effect occurs on monocrystalline structures such as quartz, tourmaline and Rochelle 

salt. Quartz crystals are in great demand for MEMS applications because of its material properties 

such as small dielectric loss, thermal stability and great mechanical strength. However, the 

challenges miniaturization and its relative weak piezoelectric effect compared to piezoelectric 

ceramics have been a great obstacle preventing it to be fully exploited in the MEMS technology. 

Piezoelectric ceramics have become the best choice for MEMS piezoelectric devices due to the 

ease of integrating this technology to current microfabrication methods employed by the 

semiconductor industry. Also, piezoelectric ceramics’ electrical and mechanical properties are 

compatible or better than quartz crystals. In the recent years, the most popular choices of 

piezoelectric ceramics are thin films of piezoelectric polymers such as lead-zirconate-titanate 

(PZT), aluminum nitride (AlN), and zinc oxide (ZnO). 

Table 2.1 Properties of the Most Widely Used Piezoelectric Ceramics [31, 33] 

Material Properties Unit Symbol ZnO PZT AIN 

Elastic Modulus GPA E 123 53 330 

Density kg m-3 ρ 5676 7600 3260 

Acoustic Velocity m s-1 υ 4655 3300 10400 

Poisson Ratio  σ 0.18-0.36 0.25-0.31 ~0.24 

Piezoelectric Strain Coefficient pC N-1 d31 -4.7 -130 -1.8 

Relative Permittivity  Ԑr 9-11 400-1900 8-10 

Electrical Resistivity Ω cm ρe 108-109 107-109 1010-1014 
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2.4 Mathematical Modeling of Piezoelectricity 

 The mathematical modeling of the piezoelectric effect is essential to understand the 

behavior of piezoelectric devices. To simplify the mathematical model, the thermodynamic 

behavior of the piezoelectric layer is going to be held constant. Therefore, the mathematical model 

can be simplified to represent the relationship between the mechanical and electrical quantities of 

the system only. To visualize the relationship between variables, a linear electromechanical 

equation of state can be derived as illustrated in Figure 2.4. 

 

Figure 2.4 Illustration of the linear electromechanical equation state for converse and direct 

piezoelectric effects. 

The arrows represent the relationship between the mechanical quantities Ʈn or Sr (stress or 

strain) and electrical quantities Em or Dy (electric field or electric displacement), which are the first 

order piezoelectric coefficients. The second order material coefficients connect the relationships 

between the first order coefficients which can be found in Table 2.2. The relation of each 
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coefficient depends on the choice of impendent variables and the experimental condition those are 

obtained with. 

Table 2.2 Second Order Material Coefficients [32]. 

Material properties Material coefficient Definition Si units 

Dielectric Permittivity 
eym =

∂Dy

∂Em
 

F m-1 

Impermittivity 
hym =

∂Em

∂Dy
 

F-1 m 

Elastic Compliance 
wrn =

∂Sr

∂Tn
 

N-1 m2 

Stiffness 
urn =

∂Tn

∂Sr
 

Nm-2 

 

 

 

Piezoelectric 

Piezoelectric coefficient 
dyn,mr =

∂Dy

∂Tn
=

∂Sr

∂Em
 

C N-1 

Piezoelectric coefficient 
amn,yr = −

∂Em

∂Tn
=

∂Sr

∂Dy
 

C-1m2 

Piezoelectric modulus 
cmr,yn = −

∂Em

∂Sr
= −

∂Tn

∂Dy
 

C-1 N 

Piezoelectric modulus 
byr,mn =

∂Dy

∂Sr
= −

∂Tn

∂Em
 

C m-2 

 

 From the linear electromechanical equation of state illustrated in Figure 2.4 and the second 

order material coefficients found in Table 2.2, the direct and converse piezoelectric equations can 

be given by:    

Ʈ𝑛 = 𝑏𝑦𝑟𝑆𝑟 − 𝑐𝑦𝑛𝐷𝑦 (2.1)  

Ʈ𝑛 = 𝑢𝑟𝑛𝑆𝑟 − 𝑏𝑚𝑛𝐸𝑚 (2.2)  



www.manaraa.com

20 

 

𝐸𝑚 = ℎ𝑦𝑚𝐷𝑦 − 𝑎𝑚𝑛Ʈ𝑚 (2.3) 

𝐸𝑚 = ℎ𝑦𝑚𝐷𝑦 − 𝐶𝑚𝑟𝑆𝑟 (2.4) 

𝐷𝑦 = ℎ𝑦𝑚𝐷𝑦 + 𝐶𝑚𝑟𝑆𝑟 (2.5) 

𝐷𝑦 = 𝑒𝑦𝑚𝐸𝑚 + 𝑑𝑦𝑛Ʈ𝑛 (2.6) 

𝑆𝑟 = 𝑎𝑦𝑟𝐷𝑦 + 𝑤𝑟𝑛Ʈ𝑛 (2.7) 

𝑆𝑟 = 𝑑𝑚𝑟𝐸𝑚 + 𝑤𝑟𝑛Ʈ𝑛 (2.8) 

where equations (2.3)-(2.6) describe the direct piezoelectric effect and equations (2.1), (2.2), (2.7), 

and (2.8) describe the converse effect. 

2.5 TPoS Resonators 

 Thin-film piezoelectric-on-substrate resonator (TPoS) are a new emerging technology that 

share the same great advantages as thin-film piezoelectric resonators. The difference between them 

is that TPoS resonators are fabricated on top of a low mechanical loss substrate like silicon as 

illustrated in Figure 2.5. TPoS resonators take advantage of the combination of low loss structural 

layers such as silicon with high electromechanical coupling piezoelectric materials [34]. This 

combination results in mechanical resonators with moderate to high Q factors and very high to 

ultra-high resonant frequencies. 

 

Figure 2.5 3D illustration of a ZnO-on-Si resonator showing all of its key components. 
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 When a piezoelectric resonator is coupled with low loss substrates, the low damping 

coefficients of the coupling layer tend to dissipate the energy of the device more efficiently. As a 

result return, higher Q factors can be achieved with minimum effects on the motional resistance. 

Since the piezoelectric layer can be efficiently coupled with low loss substrate, the equivalent 

acoustic velocity, 𝐶𝑞𝑙, can be found by [35]: 

𝐶𝑞𝑙 = √
𝐸1𝑇1 + 𝐸2𝑇2 + ⋯ + 𝐸𝑛𝑇𝑛

(𝜌1𝑇1 + 𝜌2𝑇2 + ⋯ + 𝜌𝑛𝑇𝑛)(1 − 𝜎2)
 (2.9) 

where 𝐸 , 𝑇 , σ and 𝜌  are the Young’s modulus, thickness, Poissons’ ratio, and density of the 

composite layers, accordingly. This equation can also be applied to thin-film piezoelectric 

resonators since they are composed with more than one layer. 

Moreover, the electromechanical  coefficient of the fundamental resonant mode, assuming 

that two or more electrodes are covering the resonator’s top surface as seen in Figure 2.5, can be 

approximated for disk and rectangle resonators by [36]: 

𝜂𝑟𝑒𝑝,𝑑𝑖𝑠𝑘 =
𝑄𝑇

𝑈𝑚𝑎𝑥
≈ 𝐸𝑒𝑑31𝜋

1

2
 (2.10) 

𝜂𝑟𝑒𝑝,𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒 =
𝑄𝑇

𝑈𝑚𝑎𝑥
≈ 𝑁𝐸𝑒𝑑31𝑙 (2.11) 

where 𝑄𝑇 is the total induced charge on the resonator’s surface, 𝑈𝑚𝑎𝑥  is the maximum 

displacement at resonance, 𝐸𝑒 is the equivalent Young’s modulus, N is the number of electrodes, 

and 𝑙 is the length of one of the sides of the top electrodes depending on the resonance mode. 

2.6 Capacitively-Transduced Resonators 

 A capacitively-transduced resonators are electrostatically actuated devices consisting of a 

suspended geometric membrane (square, circular and rectangular plates are the most commonly 

used ones) that defines the resonating body of the device. The membrane is held in place by 2 to 
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4 anchors, which are designed based on the preferred mode of resonance (this will be covered in 

detail in section 3.1). To operate the device as seen in Figure 2.6, a DC bias is applied to both the 

input and output electrodes to generate that potential in the capacitive gaps, which are located 

between the electrodes and the body of the resonator. Then, an AC signal is applied to the input 

electrode to generate a variable potential which triggers a varying electrostatic force, which once 

it matches one of the resonant frequencies of the resonant body. This effect is closely related to a 

time-varying or variable parallel plate capacitor as discussed in section 2.7. The time-varying 

current (i0) can be measured to obtain the frequency and electrical characteristics of the devices. 

 

Figure 2.6 3D illustration of a capacitive-transduced resonator at resonance. 

2.7 Capacitance of Parallel Plates 

 In a capacitively-transduced resonator, the capacitance signal transduction can be 

simplified to the same behavior of a parallel plate capacitor. When a DC, Vp, bias is applied to a 

capacitively-transduced resonator, an electric field is formed between the electrodes and the body 

of the resonator. According to Gauss’s law, a uniform electric field between two parallel plates 

separated by a dielectric material with permittivity ε, can be defined by:  
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𝐸𝑑 =
𝑄𝑑

𝜀𝐴
 (2.12) 

where E is the uniform magnitude of the electric field, d is the electrode-to-resonator gap distance 

and Q is the storage charge. 

 For a uniform electric field (ideal capacitor), the voltage between plates and the capacitance 

can be defined by: 

𝐸𝑑 = 𝑉, 𝑤ℎ𝑒𝑟𝑒 𝐸 =
𝜀𝐴

𝑄
 (2.13) 

𝐶 =
𝑄

𝑉
 (2.14) 

where 𝐶 is the capacitance 

 The capacitance between the plates can be found by substituting equation (2.14) into (2.13): 

𝐶 =  
𝜀𝐴

𝑑
 (2.15) 

 Equation (2.15) defines the ideal capacitance between two parallel plates, this can be solved 

for if a DC bias is applied to the device. Since the main purpose is to actuate the device into 

resonance a time-variant electrostatic force needs to be generated. To be able to generate an 

electrostatic force, a time variant 𝑉𝑖 𝑐𝑜𝑠(𝜔𝑛𝑡) signal is applied to the input electrode which creates 

a time-variant parallel capacitor behavior that can be modeled by:  

𝜕𝐶

𝜕𝑥
=

𝜕𝑄

𝜕𝑉
=

𝜀𝐴

𝑑2
 (2.16) 

 Therefore, this generates a change in the kinetic energy of the resonator that can be modeled 

by: 

𝐹𝑒𝑙𝑒𝑐𝑡 =
𝜕Є

𝜕𝑥
=

1

2

𝜕𝐶

𝜕𝑥
(𝑉𝑝 + 𝑉𝑖 𝑐𝑜𝑠(𝜔𝑛𝑡))2 (2.17) 

 Assuming the response of the resonator is linear, the electrostatic force can be written as: 
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𝐹𝑒𝑙𝑒𝑐𝑡 =
𝜀𝐴

𝑑2
𝑉𝑝𝑉𝑖 𝑐𝑜𝑠(𝜔𝑛𝑡) (2.18) 

 Finally, to find the efficiency of the transduced signal at the point where input electrical 

signal is transformed into mechanical energy, the electromechanical coupling, 𝜂𝑟𝑒𝑐, is calculated. 

Assuming minimum losses during the signal transduction from the input to the output electrodes, 

the electromechanical coupling coefficient between the output and input electrodes can be given 

by:  

𝐹𝑒𝑙𝑒𝑐𝑡

𝑉𝑖 𝑐𝑜𝑠(𝜔𝑛𝑡)
=

𝜀𝐴

𝑑2
𝑉𝑝 = 𝜂𝑟𝑒𝑐       𝑤ℎ𝑒𝑟𝑒 𝑟𝑒𝑐 = 1,2     (2.19) 

2.8 Resonant Mode Shapes 

 When the time-varying force is generated on an elastic material that matches its natural 

resonant frequencies and mode shape, the device is driven into resonance. Depending on the 

frequency and the geometry of the elastic material, many resonant mode shapes can be achieved. 

For the purpose of this dissertation, only the in-plane or lateral/contour extensional modes have 

been explored. There are two fundamental relationships that need to be considered for each 

element in motion while in resonance: Newton’s second law of motion and hook’s law. To simplify 

this approach, a simple harmonic motion where all displacements are proportional to 𝑠𝑖𝑛 𝜔𝑛𝑡 

(where 𝜔𝑛𝑡 = 2𝜋) in an isotropic cube will be considered [37]. Based on the vector displacements 

shown in Figure 2.7, the following relations can be derived: 

𝐴𝛻2𝑢 + 𝐵
𝜕𝜖

𝜕𝑥
= −𝜌𝜔𝑛

2𝑢(𝑥) (2.20) 

𝐴𝛻2𝑣 + 𝐵
𝜕𝜖

𝜕𝑦
= −𝜌𝜔𝑛

2𝑣(𝑦) (2.21) 

 𝐴𝛻2𝑤 + 𝐵
𝜕𝜖

𝜕𝑧
= −𝜌𝜔𝑛

2𝑤(𝑧) (2.22) 
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This yields three major equations that can be simplified into a more elegant form known as the 

wave equation: 

(𝛻2 + ℎ2)𝜖 = 0 (2.23) 

 

where, 

𝛻2 =
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
 (2.24) 

 𝜖 =
𝜕𝑢(𝑥)

𝜕𝑥
+

𝜕𝑣(𝑦)

𝜕𝑦
+

𝜕𝑤(𝑧)

𝜕𝑧
 (2.25) 

ℎ2 =
𝜌𝜔𝑛

2

𝐴 + 𝐵
 (2.26) 

where 𝜌 and 𝜔 are the density of the structural material and the radial frequency accordingly. Also, 

A and B are given in terms of the fundamental elastic constants λ and μ with A= μ and B= λ+ μ. 

 

Figure 2.7 Illustration of an isotropic cube with three common resonant modes depicted.  
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 The solutions of these equations cover all possible resonant shapes which are infinite. In 

Figure 2.7, three fundamental resonant mode shapes are shown. To be able to obtain the lateral 

extensional (i.e., length or width extensional for square and rectangular membranes) or contour 

modes (i.e., fundamental extensional modes for disk devices) of vibration only the forces that 

generate stress is in the 𝑢(𝑥) displacement direction are considered, and the other displacements 

are neglected. Using direct substitution of equations (2.25) and (2.24) into equation (2.20), the 𝑥 -

wave equation can be derived as:  

𝜕2𝑢

𝜕𝑥2
= −

𝜌

𝐸
𝜔𝑛

2𝑢(𝑥) (2.27) 

where 𝐸 is the Young’s modulus of the structural material. 

 A solution to the linear differential equation (2.27) that satisfies the boundary condition 

where the stress in the longitudinal direction equals zero at the end of the bar (i.e., 𝑥 =0, 𝑥 =l) is 

𝑢(𝑥) = 𝑐𝑜𝑠𝑘𝑛𝑥 (2.28) 

 Furthermore, the solution expressed in equation (2.28) shows that if 𝑘 =
𝜋

𝑙
 or any digital 

number multiple of  
𝜋

𝑙
 , the extensional stress is reduced to zero at x=l; therefore, 

𝑘𝑛𝑙 = 𝑛𝜋, 𝑛 = 1,2,3 … (2.29) 

where the relationship between 𝑘 and ω can be found by substituting equation (2.29) into (2.27) 

as: 

𝑘𝑛 = 𝜔√
𝜌

𝐸
 (2.30) 

Substituting the values of 𝑘𝑛 from equation (2.30) into (2.29) and (2.28) results in the resonance 

frequency and the displacement 𝑢(𝑥) for this system, accordingly: 



www.manaraa.com

27 

 

𝜔𝑛 = 2𝜋𝑓𝑛 =
𝑛𝜋

𝑙
√

𝐸

𝜌
 (2.31) 

𝑢(𝑥) = cos 𝜔𝑛 √
𝜌

𝐸
 (2.32) 

 For circular disk contour modes, a similar approach can be derived to obtain the frequency 

equation given by: 

𝜔𝑛,𝑚 = 2𝜋𝑓𝑛,𝑚 =
𝛼𝑛,𝑚2𝜋

𝑅𝑑𝑖𝑠𝑘
√

𝐸

𝜌
 (2.33) 

where 𝑅𝑑𝑖𝑠𝑘  is the radius of the disk and 𝛼𝑛,𝑚 is the frequency constant related to the mode(𝑛, 𝑚).  

 Since circular disks can achieve non-axisymmetric resonant modes, a proper 

approximation to 𝛼𝑛,𝑚 is needed as a frequency scaling factor. The subscripts (𝑛, 𝑚) denote the 

frequency modes where 𝑛 is the circumferential order related to the nodal diameter and 𝑚 is the 

radial harmonic of the disk at resonance [38]. The frequency scaling factor 𝛼𝑛,𝑚 for the first four 

disk fundamental contour modes assuming a Poisson ratio μ = 0.30 are: 𝛼2,1 = 0.272, 𝛼𝑅,1 =

0.342, 𝛼3,1 = 0.418, and 𝛼2,2 = 0.493. This sequence was selected with the aid of COMSOL 

Multiphysics® modal simulation of a disk resonator as shown in Figure 3.1. 

2.9 RF MEMS Resonator Equivalent Circuit Model 

Despite of the geometry or resonant mode, vibrating systems can be represented by lumped 

mechanical and electrical models. As illustrated in Figure 2.8 (a), a point-mass system on a linear 

damper and a linear elastic spring can be used to model this. By applying an external actuation 

force, modal resonance can be achieved. Figure 2.8 (b) presents the analog equivalent lumped 

electrical system composed of an inductor, capacitor and resistor. The mass, elastic compliance 

and the damping of the mechanical domain is analogous to the inductance, capacitance and 
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resistance of its electrical domain counterpart as shown in Table 2.3. These are essential system 

parameters because they’re needed for the simulation of electrical resonator models derived from 

mechanical behavior models. In figure 2.8 (c), the electromechanical model that will be used 

throughout this dissertation is presented where the two transformers resents the isolation between 

the input and output electrodes. The capacitors Cod and Cos represent the driving and sensing metal 

pad’s static capacitance between the electrodes and the device layer, accordingly. The in series 

LCR represents the behavior of the body of the resonator at resonance derived from Figure 2.8 (a) 

and (b). The substrate feed-through capacitance (Cf) accounts for the RF signal leakage between 

the input and output electrode through the substrate. The electromechanical coupling, ηre, 

represents the energy conversion efficiency between the electrical and mechanical domains of the 

sensor as described in section 2.6. 

Table 2.3 Electromechanical Analogy between Electrical and Mechanical Parameters. 

Mechanical Variable  Electrical Analog 

Force (F)  Voltage (V) 

Velocity (v)  Current (I) 

Mass (Mre)  Inductance (Lm) 

Compliance (1/kre)  Capacitance (Cm) 

Damping (Cre)  Resistance (Rm) 

 

 When disk or a square plate goes to resonance, not all of its mass is contributing to the 

kinetic energy equally. As illustrated in In Figure 2.9, a fraction of the total mass (Mtot) is 



www.manaraa.com

29 

 

considered as the dynamic mass (Mre) and the rest is the static mass (Mstatic). This is a very 

important concept because as illustrated in equation (2.42), an important key parameter to find the 

sensitivity of a mass sensor is the equivalent mass Mre. 

 

Figure 2.8 Illustration of the (a) mechanical and (b) electrical equivalent circuit models; and (c) a 

complete electromechanical model of the device. 

 The equation to find the 𝑀𝑟𝑒 of disk and plate shaped resonators have been extensively 

derived for different resonant mode shapes for disk resonators using many approaches [39, 40]. 

However, the following approach was chosen because the resultant dynamic mass give us the best 

approximated results regardless of resonant mode shape. The 𝑀𝑟𝑒 of a disk resonator at the point 

(Rdisk ,) can be approximated by dividing the kinetic energy by one-half of the square velocity at 

a given maximal displacement point. For this device the dynamic mass can be approximated by:                                

𝑀𝑟𝑒 =
𝐾𝐸𝑡𝑜𝑡

1
2 𝑣′(𝑅𝑑𝑖𝑠𝑘 , 𝜃)2

=

2𝜋𝜌𝑛𝑡𝑛 ∫ 𝑟𝐽1
2 (

𝜔𝑛

𝐶𝑞𝑙
𝑟) 𝑑𝑟

𝑅𝑑𝑖𝑠𝑘

0

𝐽1
2 (

𝜔𝑛

𝐶𝑞𝑙
𝑅𝑑𝑖𝑠𝑘)

 (2.34) 

where 𝐽1is the Bessel function of the first kind [41]. 
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For plate resonators, a similar approach as the one taken for disk resonator can be 

performed to obtain the 𝑀𝑟𝑒 , which yields the following [38]: 

𝑀𝑟𝑒 =
𝜌𝑛𝑡𝑛𝐴

2
=

𝑀𝑡𝑜𝑡

2
 (2.35) 

where A is the area of the plate. 

 

 

Figure 2.9 2D illustration of the dynamic mass of a 2nd contour mode disk resonator.  

The equivalent stiffness, 𝐾𝑟𝑒, and damping, 𝐶𝑟𝑒, of the system at resonance can be then 

obtained by: 

𝐾𝑟𝑒 = 𝑀𝑟𝑒𝜔𝑜
2 (2.36)  

𝐶𝑟𝑒 =
𝜔𝑛𝑀𝑟𝑒

𝑄
 (2.37) 

From Figure 2.7(C), the equivalent lumped-element circuit parameters can then be derived 

as follows: 
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𝐿𝑚 =
𝑀𝑟𝑒

𝜂𝑟𝑒𝑐,𝑝
2

 (2.38)  

𝐶𝑚 =
𝜂𝑟𝑒𝑐,𝑝

2

𝐾𝑟
 (2.39)  

𝑅𝑚 =
𝐶𝑟𝑒

𝜂𝑟𝑒𝑐,𝑝
2

 (2.40)  

 To calculate the platform rigid dynamic of a plate resonator equations (2.38) to (2.40) can 

be used because the resonant dynamics are the same, with exception of 𝑀𝑟𝑒. 

2.10 Sensitivity and Limit of Detection (LOD) of RF MEMS Resonators 

The limit of detection of a resonant sensor can be found by the device signal to noise ratio: 

𝐿𝑂𝐷 =  
𝑆

∆𝑓𝑛𝑜𝑖𝑠𝑒
 (2.41)  

where  𝑆 and ∆𝑓𝑛𝑜𝑖𝑠𝑒 are the sensitivity and the short-term noise of the sensor. 

When an added mass is much smaller than the 𝑀𝑟𝑒 , the sensitivity and resolution of a 

MEMS resonator can be approximated by: 

𝑆 =  
∆𝑓

∆𝑚
≈

𝑓𝑛,𝑚

2𝑀𝑟𝑒
 (2.42)  

where ∆𝑓 is the measurable frequency shift, ∆𝑚 is the change of mass, 𝑓𝑛,𝑚 is the resonance at the 

contour or length extensional resonant mode, and 𝑀𝑟𝑒 is the dynamic mass of the resonator. 

The mass resolution of the device can be obtained by measuring the short-term resolution 

and the slope of the phase at resonance  

∆𝑓𝑛𝑜𝑖𝑠𝑒 = (
∂φ

∂𝑓
ǀ𝑓0

)
−1

∆φ (2.43)  

where  
∂φ

∂𝑓
ǀ𝑓0

 is the slope of the phase at resonance and ∆φ is the zero span phase noise.  
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CHAPTER 3 CAPACITIVE RF MEMS RESONATORS 

Capacitively-transduced MEMS resonators are one of the most attracting mass sensing 

technologies available because it has many great advantages. Minimum air damping losses is the 

greatest advantage of these devices, therefore they can detect diminutive mass changes in both 

vacuum and air. It has been reported that these devices can achieve resonant frequencies from 

MHz to GHz with Q factors exceeding 5,000 [42-44].In order to achieve high resonant frequencies, 

the resonant body needs to be scaled down to very sizes (usually in the micron range) as described 

in equations (2.31) and (2.33). This process can be achieved using standard MEMS fabrication 

techniques. One more benefit of scaling down the resonant body is that a smaller 𝑀𝑟𝑒  can be 

achieved as demonstrated in equation (2.34). These parameters are very important while 

determining the sensitivity and resolution of the device. However, the trade-off of scaling down 

the resonant body is the reduction of the electrode overlapping area which increases the motional 

impedance 𝑅𝑚  of the device. This effect can be observed by substituting equation (2.19) into 

(2.40): 

𝑅𝑚 =
𝐾𝑟𝑒

𝜔𝑜𝑄𝑉𝑝
2 ∙

𝑑𝑜
4

𝜀𝑟
2𝜀𝑜

2𝐴𝑜
2 (3.1) 

where do is the electrode-to-resonator air-gap distance; 𝜀𝑟 is the relative permittivity of air; 𝜀𝑜 is 

the permittivity in vacuum; 𝐴𝑜 is the electrode-to-resonator overlap area.  

 Commonly reported motional impedance values of MEMS capacitively-transduced 

resonators range from hundreds of kΩ to few MΩ. This values are very large compared to the RF 

industry standard of 50-377Ω. Therefore, they cannot be easily integrated with commercially 
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available technology without an amplification step. To amplify the signal additional components 

such as trans-impedance amplifiers are needed. Usually, it is not a good practice to integrate too 

many off-chip components into one device because that introduces additional noise. In addition, 

the overall device assembly becomes more expensive. Therefore, this chapter covers a few 

practical approaches that can be applied to reduce the motional resistance. 

3.1 Resonant Frequency and Mode Shape Selection 

For resonant frequency and mode shape selection, electrodes and anchors needs to be 

strategically designed. As previously mentioned in section 2.8, an elastic body has infinite number 

of resonant modes. In this dissertation, only the extensional lateral and contour modes have been 

studied. To be able to discriminately select these modes, a FEM modal analysis using COMSOL 

Multiphysics® is performed as shown in Figure 3.1. The FEM model consists of a suspended 

membrane composed of the intended structural material.  

 

Figure 3.1 FEM nodal analysis using COMSOL Multiphysics® of a circular membrane vibrating 

at the first 4 contour modes. 

To be able to achieve the intended electrode design the maximal displacement area needs 

to be identified. As seen is Figure 3.1 the maximal displacement (red colored) area occurs on 
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specific areas of the resonant body. This red colored area is also where the maximum mechanical 

deformation occurs.  

As discussed in section 2.7, the maximal displacement determines where the maximum 

variations of the gap distance is more variable at the time of resonance, thus generating the 

maximum energy transfer. A strategic electrode design that matches the maximal displacement 

areas can drive and detect the energy of the intended resonant mode more efficiently. Figure 3.2 

shows two design approaches to best match the 1st and 2nd disk contour resonant modes. 

 

Figure 3.2 Electrode and anchor design approaches: (a) 1st contour resonant mode characteristics 

and anchor location used to create a (c) 3D device matching model, (b) 2st contour resonant mode 

characteristics and anchor location used to create a (d) 3D device matching model. 

One more important parameter is the placement of a set of structures known as the anchors. 

These structures connect the free-standing membrane to the device layer. The placement and size 

are very crucial for device performance and frequency discrimination. It is ideal to make these 

structures as small as possible because they introduce a large amount of damping into the system 

[45]. Also, they can be strategically design to damp unwanted spurious resonant frequencies. As 
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opposite to the electrode design, anchors should be placed at the minimal displacement areas of 

the targeted resonant mode shape. As shown in Figure 3.2 (a), the anchors are placed in a way that 

only the 1st contour mode can be obtained, while damping out most of the other resonant modes in 

Figure 3.1 except the 4th contour mode. The anchor design shown in Figure 3.2 (b) is not ideal, 

because the anchors interfere with the targeted 2nd contour resonant mode. However, its large 

electrode overlapping area makes it as an ideal design that can excite most contour resonant modes 

as shown in Figure 3.1. It is important to note that the crystal orientation also plays a very important 

role the anchor design. In-depth analysis of electrode and anchor design for targeted resonant 

modes using capacitive devices have been well investigated [39]. 

3.2 Oxidation Air-gap Reduction Fabrication Process 

(a)

(b)

(c)

(d)

(e)

(f)

SiO2 Si Device 
Layer

Poly-Silicon Low Stress
Nitride

Evaporated 
Gold

Si Substrate

 

Figure 3.3 Oxidation air-gap reduction fabrication process flow: (a) PECVD and LPCVD 

deposition of SiN and Polysilicon accordingly, (b) HAR DRIE of polysilicon/SiN hard mask, (c) 

1 μm-thick furnace wet oxidation of the hard mask, (d) HAR DRIE of Si and hard mask removal, 

(d) gold contact pads and release, (d) backside release via HAR DRIE of Si. 
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According to Equation (3.1), one practical way to reduce the motional resistance of the 

device is by reducing the electrode-to-resonator air-gap distance. The fabrication of a capacitive-

transduced resonator with a novel oxidation defined air-gap technique is illustrated in this section. 

The MEMS resonating sensing platforms have been microfabricated using silicon-on-insulator 

(SOI) substrates with highly doped 5 μm-thick device layer with resistivity ranging from 0.005 Ω 

cm to 0.020 Ω cm and a 1 μm-thick buried oxide (BOX) layer.  

 

Figure 3.4 SEM of fabricated devices: 2st extensional contour and 1st extensional contour designs 

for (a)(c) square and (b)(d) circular membranes accordingly.  

Figure 3.3 summarizes the fabrication process flow that consists of three photolithography 

steps. The fabrication process starts with a deposition of a 100 nm-thick plasma-enhanced 

chemical vapor deposition (PECVD) stoichiometric silicon nitride that serves as an oxygen 
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diffusion barrier layer. This is followed by a 2μm-thick polysilicon low pressure chemical vapor 

deposition (LPCVD) as the material of choice for the hard mask as seen in Figure 3.3 (a). 

Thereafter, a lithography step using a 1 μm- thin AZ1512 photoresist layer is performed, followed 

by a short high-aspect-ratio deep reactive ion etching (HAR DRIE) of the silicon device layer 

using a modified Bosch process (see section 3.3) as seen in Figure 3.3 (b). This process yields an 

electrode-to-resonator gap spacing of 1 μm. Next, a 1 μm-thick SiO2 layer is grown to decrease 

the gap spacing down to ~300 nm as seen in Figure 3.3 (c), which is followed by a short modified 

Bosch silicon HAR DRIE etch to transfer the nano-gap to the device layer in the SOI wafer device 

layer as seen in Figure 3.3 (d). A lithography step using AZ12XT, followed by 50 nm Cr / 200 nm 

Au using an ebeam evaporator defines the gold contact pads. Finally, a 5.5 μm- thick AZ12XT is 

used to define the etch window through which the resonator body can be released by etching the 

buried oxide layer using a 6:1 buffer-oxide-etch (BOE) as seen in Figure 3.3 (e). As an alternative 

approach, backside release can be carried out to further improve the processing yield and reduce 

the device cross-talk. This can be achieved by a photolithography step using a 10 μm-thick 

AZ12XT photoresist which is patterned on the backside of the wafer. Then a HAR DRIE dry etch 

of Si defined the release holes. To suspend the devices, the BOX layer can be readily etched away 

as shown in Figure 3.3 (f) by dipping the processed wafer into a 6:1 BOE solution for a few minutes. 

For the oxidation air-gap reduction process, four designs were fabricated as shown in Figure 3.4 

following the design analysis in section 3.1. The initial air-gap of 1 μm was reduced to ~300 nm. 

In Figure 3.5, a 1st contour square mode design electrode-to-resonator air-gap was reduced from 1 

μm to 251nm. This is anticipated to lead to a significant reduction of  𝑅𝑚, which varies inversely 

proportional to 𝑑0
4 according to equation (3.1). 
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Figure 3.5 SEM image of air-gap reduction results after 1 μm wet furnace oxidation. 

3.3 DRIE Characterization 

One of the biggest challenges of fabricating small capacitive gaps is to transfer the nano-

meter electrode-to-resonator gap spacing patterned precisely into the device layer. The DRIE is a 

great tool that was designed for straight sidewall transfer especially for the formation of high-

aspect ratio structures (HARS) in silicon. The most common method of forming straight sidewalls 

using the DRIE is a time multiplex deep etching technique (TMDE) known as the Bosch process. 

It is widely used because it has good material selectivity, CMOS compatibility, high etch rate, and 

it is also a highly anisotropic process. SF6 and CF4 are the two common etch chemistries in silicon 

HAR DRIE process. For both of them, a fluorine free radical is released after either gas has been 

dissociated in plasma: 

𝑆𝐹6 → 𝑆𝐹5
∗ + 𝐹    𝑜𝑟    𝐶𝐹4 → 𝐶𝐹3

∗ + 𝐹  

Silicon etch rate depends on both the number of free F radicals and the area of exposed 

silicon. Fluorine silicon etch at temperatures higher than -15°C is known be isotropic; therefore, 

there is a need of extra steps that requires a specialized chemistry to protect the sidewalls. In most 

cases, C4H8 is used to protect the sidewalls because its product, -(CF2)-, reacts with silicon to form 

a Teflon-like protection layer that can be removed with oxygen plasma. The cycling of SF6 and 
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C4F8 is what makes the HAR DRIE Bosch dry etch an anisotropic process as illustrated in Figure 

3.6. 

As observed in Figure 3.6 (d), the sidewall roughness generated after a Bosch etch run is 

called scalloping. There are two types of scalloping profiles: scallop depth and length. Scallop 

length is generated by free fluorine radicals that remove Si atoms vertically; therefore, it can be 

minimized by either reducing the source power, SF6 gas flow and/or pulse time. The effect of 

scallop length is rather positive because the larger it is the faster is the etch rate. On the other hand, 

scallop depth is generated by the isotropic nature of fluorine radicals at temperatures higher than  

-20°C. To be able to minimize scalloping, there are two commercially available solutions: 

cryogenic and fast gas switching Si etching systems.  

 

Figure 3.6 (a) Fluorine Si isotropic etch; (b) Passivation step where a Teflon-like material 

conformal deposition for sidewall protection; (c) De-passivation step horizontal surface removal 

of Teflon-like material after O2 plasma at low temperatures; (d) Bosch sidewall roughness profile. 

Cryogenic Si etching systems uses a continuous gas flow at very low temperatures (less 

than -100°C) where plasma reacts with SF6 generating fluorine free radicals. The highlight of this 
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system is that it doesn’t rely on gas pulsing cycles to obtain an anisotropic profile but rather is the 

anisotropic nature that fluorine at low temperatures; therefore, no sidewall roughness is left. In the 

other hand, fast gas switching systems uses special fabricated valves that allows a rapid (typically 

milliseconds) pulsating flow of SF6 or CH4 and C4H8/O2 generating minimum sidewall roughness 

with scallop depth of 10-30 nm. 

Table 3.1 Standard Bosch High-aspect Silicon Dry Etching Recipe used for Alcatel AMS 100 

Inductively Couples Plasma (ICP) Systems. 

 

The system used for the fabrication of these devices is an Alcatel AMS 100 DRIE, which 

is conventional SF6 inductively coupled plasma (ICP) system that generates the following 

roughness profile: scallop length of 830 nm and scallop depth of 274 nm. This values are very 

insignificant while dealing with larger structures and passive devices. But it significantly affects 

the devices whose performance is largely based upon the size of the electrical gap as capacitive 

transduced resonators. 

 

Figure 3.7 SEM of a sidewall roughness profile after a standard Bosch recipe DRIE silicon etch 

run in an Alcatel AMS 100 ICP System with a scalloping depth (S.D.) of 271nm. 
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As illustrated in Figure 3.8, it can be observed that using a profile similar to the one shown 

in Figure 3.7, significantly changes are anticipated in the device electrical characteristics. As 

previously covered, the aim of the first generation devices is to have capacitive gap of ~300 nm.  

 

Figure 3.8 2D illustration of the capacitance behavior (a) inside of an air-gap with a known distance 

and the (b) its equivalent circuit model. 

From the achieved roughness profile as shown in Figure 3.7 and using equation (3.2), the 

final sidewall roughness will be about 600 nm or larger. For this case, a 300 nm intended profile 

will ultimately behave as a 900 nm capacitive gap. In electrical means, the 𝑅𝑚 will increase as 𝑑𝑜
4
 

according to Equation (3.1). 

𝐶𝑡𝑜𝑡 =
𝐶1 + 𝐶2 + 𝐶𝑖−1 + 𝐶𝑖

𝑛
=

1

𝑛
∑ 𝐶𝑖

𝑛

𝑖=1

 (3.2) 

In order to reduce the side wall roughness of the Si Bosch etching profile generated by the 

Alcatel AMS 100 ICP system, the process parameters need to be modified. The thickness of the 

deposited polymer (passivation layer) was the first parameter to be studied. After modifying the 

C4H8 pulse time while maintaining the SF6 pulse time constant at -15°C, very little improvement 

to sidewall roughness can be observed. However, increasing the pulse time does have a negative 
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effect because the excess of polymer deposition cannot be fully etched away by oxygen plasma 

for a successfully de-passivation step. Therefore, grassy looking profiles are achieved as the one 

seen in Figure 3.9. 

 

Figure 3.9 DRIE Bosch etch profile after the passivation values were altered: (a) Etch rate vs. pulse 

time graph of altered values and (b) the SEM image of the modified etch profile. 

The next parameter to study is the SF6 pulse time. As previously mentioned, there are 

commercial available ICP systems that use lower pulse times to reduce the sidewall roughness of 

the Si Bosch dry etch process. However, it is understood that all ICP dry etching systems are 

designed with different limitations and it is imperative not to change too many of the working 

parameters such as source power, gas pressures, and substrate holder position to prevent damage 

to the system.  

It was found that by changing the SF6 pulse time and keeping all the other parameters the 

same as seen in Table 3.1 both the scallop length and depth are affected. For this study, SF6 

pulsating values ranging from 3s to 2s were considered because values greater than 3s result in a 

significant increase in sidewall roughness. Also, values lower than 2s result in a significant 

decrease of the Bosch etching anisotropic profile. As shown in Figure 3.10, when the SF6 pulse 
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time is reduced to 2s while maintaining the substrate holder temperature constant at -15°C, a 

significant decrease of the Si isotropic etching profile is observed. This results in a substantial drop 

in the scallop depth size from 280 nm down to 84 nm as observed in Figure 3.11 (b) and Figure 

3.10 (b) while maintaining its intended anisotropic profile as seen in Figure 3.11 (a). Reducing the 

SF6 also reduces the etch rate as presented in Figure 3.10 (a), but not in an alarming rate that could 

compromise the etch profile. 

 

Figure 3.10 SF6 pulse modified profile data: (a) graph of modified SF6 pulse vs. Si etch rate and 

(b) graph of modified SF6 pulse vs. scallop depth. 

 

Figure 3.11 SEM images of SF6 pulse modified sidewall profile at -15°C: (a) overview of the 

anisotropic sidewall profile, and (b) close-up image of the scalloping depth (S.D.) size. 
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 The substrate holder temperature was lowered to -20°C (the lowest a standard Alcatel AMS 

100 DRIE system can achieve) to study the effects of Bosch SF6 Si dry etching at lower 

temperatures. It has been well documented that at lower temperatures fluorine radicals are more 

directional for etching Si [46]. As shown in Figure 3.12(b) and Figure 3.10(b), it can be observed 

that decreasing the temperature from -15 C° down to -20 C° reduces the scallop depth from ~84nm 

down to ~42nm. Also, the overall sidewall roughness is smoother and yet very vertical at lower 

temperature as shown in Figure 3.12(a). 

 

Figure 3.12 SEM images of SF6 pulse modified sidewall profile at -20 C°: (a) overview of the 

sidewall anisotropic profile and (b) close-up image of the scalloping depth (S.D.) size. 

From this study it can be concluded that smooth sidewalls can be achieved even with 

standard DRIE systems by modifying both SF6 pulse time and lowering the substrate holder 

temperature. By revisiting equation (3.2), it can be seen that now the intended 300 nm will behave 

more  like a ~385 nm capacitive gap after the customized Si Bosch recipe is applied compared to 

~900nm from the original default recipe. 

3.4 Thin Sacrificial Layer Air-gap Reduction Fabrication Process 

The fabrication approach for this devices was developed to reduce electrode-to-resonator 

air-gap distance, 𝑑𝑜, through the employment of a sacrificial 100nm ALD deposited layer. Also, 
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backside release was also implemented to minimize the device the feed-through capacitance, Cf. 

The devices were microfabricated using silicon-on-insulator (SOI) substrates with highly doped 5 

μm thick device layer resistivity ranging from 0.005 Ω cm to 0.020 Ω cm and a 1 μm-thick buried 

oxide (BOX) layer as seen in Figure 3.11(a). 

Si Substrate SiO2 Si Device 
Layer

ALD Cr/Au Seed
Electroplated 

Gold

(b)

(c)

(d)

(e)

(f)

(a)

(g)

(h)

 

Figure 3.13 Step-by-step illustration of the thin sacrificial layer air-gap reduction fabrication 

process flow:(a) a SOI wafer as the starting substrate; (b) HAR DRIE Si resonator etch; (c) 100nm 

of Al3O2 ALD layer; (d) Au/Cr seed layer; (e) Gold electroplated electrodes; (f) front-side B.O.E 

release; (g) backside HR DRIE release followed by B.O.E; (h) optional solid gap profile by HR 

DRIE backside etch followed by SiO2 DRIE release dry etch. 

Figure 3.13 summarizes the microfabrication process flow that consists of four 

photolithography steps. The fabrication process begins with a photolithography step using a 1 μm 

AZ1512, followed by 6 μm modified HAR DRIE Bosch etching recipe (as described in section 
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3.3) to define the body of the resonator. Next, a 100nm gap spacing layer was deposited using an 

atomic layer deposition (ALD) process to define the capacitive gap as seen in Figure 3.13 (c). Then, 

a thin evaporated 20nm Cr/100nm Au seed layer was deposited with an e-beam evaporator as the 

conductive electroplating layer as seen in Figure 3.13 (d). Next, a 30 μm-thick layer of AZ12XT 

is spun on the wafer, followed by a time-controlled oxygen ashing step using ICP etcher to 

selectively remove the conductive seed layer on top of the resonators. This process is known as 

etchback. Then, the exposed Cr/Au seed is removed via wet chemistry to prevent electroplating on 

top of the devices that could lead to device electrode-to-electrode shortage. Next, a 

photolithography step consisting of a 5.5 μm-thick AZ4620 is performed to form the electroplating 

mold that defines the shape of the electrodes, followed by a 4.5 μm gold electroplating step. Then, 

the photoresist electroplating mold is removed via AZ400T resist stripper and oxygen descum as 

seen in Figure 3.13 (e). This is followed by a wet chemistry removal of the Cr/Au seeding layer. 

 There are three different techniques to release this device. As illustrated in Figure 3.13 (f), 

the first technique consists of a photolithography step to pattern the release opening using AZ4620 

followed by a 4 hours of BOE wet release. As illustrated in Figure 3.13 (g), the second technique 

consist of a photolithography step to pattern the backside release openings with AZ4620 followed 

by a HAR DRIE Si etch. Then the devices are dip in to BOE for 10 minutes to remove the BOX 

and ALD layer. As illustrated in Figure 3.13(f), an optional step of creating solid gaps can be 

achieved by through HAR DRIE Si followed by DRIE SiO2 dry release etch. As shown in Figure 

3.17, front-released devices yielded ~100 nm gaps as seen in Figure 3.14. Also, backside released 

devices were successfully released as shown in Figure 3.15 with measured capacitive gaps of ~290 

nm. The intended gaps for both processes were 100 nm; however, backside release structures, 

especially the gold electrodes suffer from stress effects occurring during the BOE wet release. 
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Figure 3.14 SEM of front-side released device with 100nm air gap. 

 

Figure 3.15 SEM of suspended device after backside release of HAR DRIE Si etch. 

 

Figure 3.16 SEM of suspended device after backside release with a 290nm air-gap capacitive gap. 
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Figure 3.17 SEM of front-side fabricated devices with circular and square design for 1st contour 

and lateral resonant mode. 

3.5 RF Test Results 

 Capacitive devices were tested using the test set-up illustrated in Figure 3.18. It was found 

that the devices were shorting out after a biasing voltage of 5 DC was applied as shown in Figure 

3.20. This implies that the capacitive gaps were not fully released or/and that particles are finding 

their way in to the air gap. A pull-in voltage test that consisted of a voltage sweep generator 

confirms that the fabricated devices were shorting out after 5V as shown in Figure 3.19 (c). a few 

fully release air-gaps were measured using this method, the ~100 nm and ~250 nm air-gaps were 

shorting at 38.7V and 73.9V, respectively, as shown in Figure 3.19 (a) and (b) . This implies that 

the nano-meter capacitive gaps have unwanted particles shorting them at lower voltages. This often 
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happens when the devices are dried using solvent under atmosphere pressures. The particles in the 

solvent tend to be drawn into the air gaps by the capillary forces [47].  

 

Figure 3.18 Illustration of RF test set-up for capacitive devices. 

The only solution to this problem is to use a critical CO2 drying system right after BOE 

wet oxide release. Testing the devices with such low breakdown voltages limits the maximum 

applied DC bias to ~5V. This effect can be observed in Figure 3.21(a), where a 50 μm-radius disk 

resonator was tested using a bias voltage of 5V and the signal was too weak to be detected. If the 

gaps were fully clean, then a bias voltage of 25V or higher can be applied. As shown in Figure 

3.21(b), applying a 25v biasing voltage will reduce the motional resistance from 0.565 MΩ to 26.6 

kΩ. Thus, taking into account taking an estimated Cf of 30 fF from the measure spectrum, a DC 

bias of 25v is sufficient to observe the resonance signal. The simulated values were obtained as 

described in section 2.9 for a Si 50 μm-radius disk resonating at 45 MHz with a Q factor of 10,000. 
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Figure 3.19 Breakdown voltage (B.V.) results for (a) ~100 nm front-side released capacitive gap; 

(b) a ~250 nm backside released capacitive gap; (c) capacitive gaps with particles due to capillary 

forces. 

 

Figure 3.20 Transmission response of 50 μm-radius disk resonator before and after a DC bias 

voltage is applied. 

 

Figure 3.21 Simulation of resonator response: (a) measured spectrum compared to simulated 

responses for 5V and 25V and (b) simulated responses of 5V and 25V using measured Cf. 
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CHAPTER 4 PIEZOELECTRIC RF MEMS RESONATORS 

Piezoelectrically-transduced resonators have very similar characteristics to capacitive 

driven resonators such as the ability of having high Q factors, high resonant frequencies, and low 

equivalent mass (𝑀𝑟𝑒) values. What really set them apart is their modes of actuation as described 

in chapter 2. Piezoelectrically-transduced resonators rely on a polarized crystal layer, which in 

most cases tend to be lossy compare to the pristine capacitive actuation of a single-crystal silicon. 

However, capacitive devices heavily rely upon a dielectric capacitive gap that needs to be scaled 

down to nanometer ranges to obtain a sufficiently strong transduction. This is very challenging, as 

described in chapter 3, because it requires special capacitive gap reduction and delicate release 

techniques. On the other hand, piezoelectrically-transduced resonators don’t rely on a capacitive 

gap; thus, the electrodes can be directly coupled with the piezoelectric layer. This allows the 

transduction at resonance to be much stronger than capacitive devices resulting in smaller motional 

resistance (𝑅𝑚) values than capacitive devices [48]. To decreases the 𝑅𝑚 of piezoelectric devices, 

the electrode coupling efficiency needs to be maximize by electrode design. For a width-

extensional rectangular mode, this can be observed by substituting equation (2.11) into (2.40): 

𝑅𝑚 ≈
𝜔0𝜌𝑛𝑡𝑛

𝑄𝐸𝑛
2

∙
𝑊

𝑁2𝑑31
2 𝐿

 (4.1) 

where L, W, and N are the length, width, and number of the top electrodes, respectively. 

As shown in equation (4.1), the motional resistance can be minimized by four electrode 

design dependent parameters 𝑊 , 𝐿, 𝑑31
2 , and N that will be detailed in section 4.9. Also, the 

microfabrication can be fully optimized by using standard CMOS processes. In recent advances, a 
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newly emerging technology known as TPoS has enabled the fabrication of piezoelectric devices 

with comparable Q factor and resonant frequency values as the ones obtained by capacitive devices. 

In this chapter, the design, fabrication and test results of different types of piezoelectrically-

transduced resonators will be covered. 

4.1 Resonant Frequency and Mode Shape Selection 

In order to discriminately select a specific resonant frequency and mode shape of choice, 

few design parameters can be used. Similarly to capacitive resonators, both the electrodes and 

tethers (anchors) can be designed in ways to achieve this goal. As shown in Figure 3.2, a 3D model 

is derived from a 1st contour resonant mode of a disk shaped resonator using FEM COMSOL 

Multiphysics®. Like the capacitive resonators, the maximal displacement is used for electrode 

design and placement of tethers. 

 

Figure 4.1 Electrode and anchor design approaches for a 1st contour resonant mode and anchor 

location used to create a 3D device matching the FEM COMSOL Multiphysics® modal analysis 

model. 

For more complex geometries and higher resonant frequencies, the strain field of the 

resonant mode is preferred to match the electrode design as demonstrated in Figure 4.2. 
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Figure 4.2 Electrode and anchor design approaches using FEM COMSOL Multiphysics® modal 

analysis that models a N3 length-extensional resonant mode needed to create a 3D device matching 

model. 

4.2 Piezoelectrically-transduced Resonator Fabrication Process 

 

Figure 4.3 Step-by-step illustration of the piezoelectrically-transduced resonator fabrication 

process flow; (a)bottom lift-off process of sputtered platinum; (b) reactive sputter deposition of 

ZnO thin piezoelectric film; (c) via opening through ZnO wet etching; (a) top electrode lift-off 

process of sputtered platinum; (d) ZnO dry DRIE etching of the resonator. 
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 Piezoelectric devices were developed to achieve a lower motional resistance through the 

employment of a well characterized ZnO piezoelectric layer and top electrode design that matches 

the strain field. These devices have been microfabricated using a high resistivity single crystal 

silicon (for ZnO thin-film resonators), SOI (for ZnO-on-silicon resonators), and Poly-SOI (ZnO-

on-Polysilicon resonators) substrates. The ZnO thickness ranges from 500 nm to 750 nm and the 

device layers for the ZnO-on-substrate devices have a thickness range from 5 μm to 20 μm. Figure 

4.3 summarizes the fabrication process flow (without the release which will be covered in section 

4.4) that consists of four photolithography steps. The fabrication process begins with a 

photolithography step using 300nm of LOR-3B and 1 μm AZ1512 to generate a clean lift-off 

profile (see section 4.2). This is a critical step because the overall performance of the device 

depends on cleanness of its geometry. Then, a sputter deposition of 40nm Cr/ 200nm Pt is followed. 

It is worthwhile to mentioning that sputter metal deposition, especially for Pt, achieves better 

overall quality and adhesion in comparison with evaporated Pt. Next, the sample is placed inside 

a glass petri dish with AZ400T photoresist stripper overnight for lift-off. The final bottom 

electrodes lift-off profile is shown Figure 4.3(a). Then, a reactive sputtering deposition of 500 nm 

to 750 nm of ZnO is performed as seen in Figure 4.3(b) with optimized parameters to achieve a 

(002) c-axis aligned crystal orientation (see section 4.3). A photolithography step follows using a 

1 μm AZ1512, and then the vias are created using ZnO wet etch solution of 1 HCL:100 H2O to 

generate a direct connection to the ground electrode as seen in Figure 4.3(c). A photolithography 

step using a 300 nm of LOR-3B and 1 μm AZ1512 followed by a metal sputtering of 40 nm Cr/ 

200 nm Pt is performed. The sample is placed the inside a glass petri dish with AZ400T photoresist 

stripper overnight for lift-off. The final bottom electrodes lift-off profile is shown in Figure 4.3(d). 

Next, a photolithography step using a 5 μm AZ12XT follows, then a customized reactive ion 
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etching ZnO etch recipe using CH4 at room temperature is performed to define the body of the 

resonator as seen in Figure 4.3(e). 

4.3 Lift-off Characterization 

The lift-off profile and the quality of Pt are very important because the geometry and (002) 

c-axis orientation of the sputtered ZnO can be affected. It is widely known that the lift-off process 

of sputtered metals is far from easy, even when common negative photoresists are used such as 

the case of NR9-3000PY. However, a specially designed resist known as LOR-3B by 

MICROCHEM© performs exceptionally well with I-line TMAH based photoresist developers as 

an undercut layer. 

 

Figure 4.4 Lift-off profiles using: (a) negative photo resist; (b) positive photoresist; (c) LOR-3B 

in combination with positive photoresist. 
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It is well documented that negative photoresist is by far the most widely used photoresist 

for metal lift-off processes. However, negative photoresist is one of the hardest photoresist to 

characterize. This drawback is due to the fact that when a negative profile is needed, such as the 

one illustrated in Figure 4.4(a), a great deal of effort to characterize the recipe is needed. 

Characterization of negative photoresist is very hard especially when dealing with features smaller 

than 5 μm, because to achieve a negative profile the photoresist has to be overexpose in a time-

controlled manner. Since most UV bulb based exposure systems don’t have a consistent uniformity, 

it is common to find features in some areas of the wafer to be overexposed while others are still 

underexposed. This inconsistency affects greatly the geometry and topology of the intended pattern. 

When the wafer is overexposed, most of the smaller features don’t develop fully or not at all. In 

the case of underexposed, a similar profile to the positive photoresist is achieved as seen in Figure 

4.4(b), making a clean lift-off process hard to achieve. This effect is commonly seen after the wafer 

has gone through multiple fabrication steps and the topography is not completely flat. A typical 

negative profile can be observed in Figure 4.5(a) where the features are slimmer due to the negative 

nature of the profile. I-line positive photoresists such AZ -line are known for their large tolerance 

to either over and under exposure, this allows a higher yield for devices with smaller features. 

Positive photoresist is also used for lift-off processes but its overall profile quality is worse than 

negative photoresist and it is difficult to achieve small features via metal lift-off. As shown in 

Figure 4.4(b), positive photoresist achieves the opposite exposure profile thus making it very 

difficult to achieve a clean lift-off because deposited layers coated over the sidewalls conformably. 

In most of the cases, an ultrasonic bath is needed to be able to tear apart the metal to define the 

edge of the intended pattern. The results are rough edges and in some cases features smaller than 

3 μm are torn away with this physical removal process as shown in Figure 4.5(b). A great solution 
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that allows both a high yield of features smaller than 3 μm and a clean lift-off is achieved when 

LOR-3B is integrated into the process. As seen in Figure 4.4(c) and Figure 4.5(c), LOR-3B is a 

resist that is deposited before a positive photoresist layer to generate a controllable undercut profile 

for the lift-off processes.  

 

Figure 4.5 Optical images of lift-off profiles after using: (a) (NR9-3000PY) negative photoresist; 

(b) AZ1512 positive photoresist; (c) LOR-3B and AZ1512. 

4.4  ZnO Magnetron Deposition Characterization 

In order to have a strong transverse piezoelectric coefficient, 𝑑31, a good quality (002) c-

axis oriented ZnO thin-films are needed. It is well known that there is a correlation between c-axis 

crystal orientation and 𝑑31. For piezoelectric contour resonant modes, highly c-axis oriented ZnO 

thin-films are needed to minimize the transduction losses to achieve a lower motional resistance. 

After a few trials, good quality films were achieved by customizing the following three key 

parameters: oxygen concentration, substrate temperature, and post-deposition annealing. It has 

been well documented that ZnO dissociates into zinc and oxygen atoms in a reactive sputtering 

deposition [49]. Independently, some of free zinc atoms don’t tend to recombine with oxygen 

causing an excess of Zn on the deposited film. Therefore, an oxygen environment is needed as a 

reactive gas to ensure a O2 rich ZnO film. For this case, it was found that ZnO films grown in a 

1:1 ratio of O2:Ar environment exhibit the strongest (002) crystalline orientation. Substrate 

temperature also plays an important role because it helps the deposited ZnO achieve its 
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piezoelectric crystal characteristic. For this work, 300°C in-situ annealing give us the best results. 

Finally, post-deposition annealing treatment helps enhance the crystal orientation as seen in Figure 

4.6. 

 

Figure 4.6 XRD of a 500nm sputtered ZnO layer after annealing treatments: (a) no treatment; (b) 

300°C for 1hour; (b) 400°C for 1 hour. 

4.5 Release Process for Piezoelectrically-transduced Resonators 

In section 4.1, the microfabrication process to fabricate a piezoelectric resonator was 

covered with the exception of the final release step. In fact, the release process of ZnO thin-film 

resonators is the most challenging fabrication step and it can be done in several ways. For this 

work, four different approaches that yields four different results as shown in Figure 4.7 were 

demonstrated. 

Figure 4.7 (a) shows the first release that was tried, it consisted of releasing the resonator 

by undercutting the Si substrate. This approach yields a suspended membrane consisting of just 

the top and the bottom electrodes with a sandwiched ZnO layer sandwiched in between.  
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Figure 4.7 2D illustration of four different release techniques: (a) device perspective without 

release, (b) DRIE SF6 isotropic dry release, (c) TSV HAR DRIE backside dry release, (s) 49% HF 

pre-release, (c) SRE dry release. 

The advantage of this approach is that the release is simple and it can be done on a wafer 

level in just one hour. A more complex release is needed to fabricate ZnO-on-substrate resonators 

as shown in Figure 4.7(c)(d)(e). ZnO-on-Si resonators consist of a suspended piezoelectric layer 

sandwich by two electrodes and coupled with a single crystal Si layer. For this case, a SOI substrate 

is preferred because it allows to simplify and minimize the fabrication steps to have a high yield 

of working devices. However, one more photolithography step is needed as compared to thin-film 

ZnO resonators because it requires a localized release step by using either wet or dry etching to 

controllably release the resonant body. 
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Figure 4.8 2D illustration of ZnO-on-Si backside release: (a) TSV HAR DRIE Si backside etch 

followed by (b) a SiO2 DRIE release etch. 

Starting from Figure 4.8 (a), the device layer is protected by a 7 μm layer of AZ12XT 

photoresist. A photolithography step using a 7 μm layer of AZ12XT takes place followed by 

backside aligning to define the release window. Then, a through silicon via (TSV) etch step using 

the HAR DRIE Si etch is performed. It is worthwhile mentioning that ZnO can be easily etched 

by wet chemicals such as HF or BOE. Therefore, the next step is a SiO2 DRIE dry etch to remove 

the BOX oxide, thus fully suspending the device. It is important to note that the wafer should be 

diced to avoid the plasma loading effects of the DRIE system [50].The die is left overnight in a 

petri dish with AZ400T photoresist stripper. Finally, the device is rinsed with D.I. water and 

isopropanol, then it is placed in an oven at 100°C for quick drying. Figure 4.7 (d) shows another 

release technique for ZnO-on-substrate resonators known as oxide pre-releasing. Referring to 

Figure 4.3 (a), using a SOI wafer as our starting substrates, the first step is to pattern the body of 

the resonator as shown in Figure 4.3 (e). A HAR Si DRIE dry etching using the BOX oxide layer 

as the etch stop layer is then conducted. This is done as the first fabrication step to be able to 

release the Si resonator body using a 49% HF release bath before any other fabrication steps as 

shown in Figure 4.9 (a). Then all the remaining fabrication steps as illustrated in Figure 4.3 follows 
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until the device is completed as shown in  Figure 4.9 (b). It’s important to note that the first step 

is to release the devices, and then all sequential steps need to the performed with extreme care 

otherwise the suspended membranes tend to collapse. A useful tip is not to N2 blow dry the devices 

after wet processes such as solvent clean and developing. In my experience, the oven drying the 

devices at 50°C follow by a 50 W 300 sccm O2 plasma clean is the best approach. 

 

 

Figure 4.9 2D illustration of oxide pre-releasing: (a) pre-release profile after HAR DRIE and 1 

hour of 49% HF, (b) device cross-sectional profile after all fabrication steps are done. 

SOI wafer technology has revolutionized the way devices are designed, but it is still a very 

costly alternative with prices ranging from $150 to over $1,000 dollars per wafer depending on the 

needed properties. ZnO-on-Si devices take advantage of the high electromechanical coupling of 

the piezoelectric material and the low damping coefficient of the single crystal Si device layer. 

Therefore, as long as the wafer has a good quality single crystal Si, the following cost and time 

effective release technique can be used. Figure 4.10 (a), the thin-piezo on single-crystal reactive 

etched (TPoSCRE) technique begins with a HAR DRIE Si dry etch  to define the resonant body 

of the desired Si coupled layer.  Then, an ALD deposition of 30 nm Al2O3 follows to define the 

etch protection layer as shown in Figure 4.10 (b). This is followed by a SiO2 DRIE dry etch to 

remove the 30 nm AL2O3 from the horizontal surfaces. It is important to note that the H2 free 

radical that is used for etching oxides fairly directional at -20°C. Therefore, it only etches the 

horizontal Al2O3 layer as seen in Figure 4.10 (c). The final step is to perform a SF6 isotropic dry 
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etch at room temperature to release the device as shown in Figure 4.10 (d). The final product is a 

suspended membrane with a Si coupling layer. The great advantage of this technique is that it can 

be customized to obtain any device layer thickness.  

 

 

Figure 4.10 2D illustration of the TPoSCRE release technique: (a) HAR Si DRIE dry etch of Si; 

(b) ALD deposition of 30 nm Al2O3 layer; (c) SiO2 DRIE etch of horizontal Al2O3 layer; (d) Si 

DRIE isotropic release etch of Si. 

4.6 On-wafer Probing 2-port Set-up 

The devices were tested using a cascade RF probe station with on-chip probing capabilities 

after fabrication. The HP 8753E VNA was calibrated using a Short-Open-Load-Thru (SOLT) 

calibration procedure using a CS-5 calibration substrate provided by GGB industries Inc. This 

establishes the measurement reference planes at the probes by removing the effects of cables, 

connectors and the VNA electronics. The scattering parameters (S-parameters) were extracted 

after carefully landing a pair of GSG-150 microprobes on to the metal contact pads using a pair of 

cascade micromanipulators. The GSG-150 microprobes were connected directly to the VNA via 

coaxial cables as illustrated in Figure 4.11.  
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Figure 4.11 Illustration of RF test set-up for on-wafer probing characterization of piezoelectric 

actuated resonators. 

Since the obtained s-parameters from this test set-up includes external circuit influences 

such as the parasitic resistances of components and VNA port termination resistance (RL=50Ω), 

matched to the Rm of the device. Therefore, the Q factor is reduced because the mismatch between 

the Rm and RL affect the electrical response of the device. The measure Q factor is known as the 

loaded Q factor (QL). The intrinsic Q factor or unloaded Q factor (QUL), can be calculated by 

knowing the relationship between QL, QUL, and measured insertion loss (IL) expressed as [51] 

𝑄𝑈𝐿

𝑄𝐿
=

10
𝐼𝐿
20

10
𝐼𝐿
20 − 1

 (4.2) 

Once QL and QUL are found from Equation (4.2), then the Rm can be determined by: 

𝑄𝐿 = 𝑄𝑈𝐿

𝑅𝑚

𝑅𝑚 + 𝑅𝐿
 (4.3) 
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4.7 Thin-film ZnO Resonators 

Thin-film ZnO contour-mode resonators were fabricated as illustrated in Figure 4.3 with a 

750nm-thick ZnO layer. Then, they were released using a DRIE SF6 isotropic dry release as 

illustrated in Figure 4.3(b). This is a high yield technique that allows almost 100% of the devices 

to be successfully released with minimum damage to the electrodes and ZnO device layer as seen 

in Figure 4.12.  

 

Figure 4.12 SEM photos of 1st contour mode thin-film ZnO resonator after the releasing step. 

 

Figure 4.13 Measured forward transmission frequency response of a 38 μm-radius 1st contour 

mode thin-film ZnO disk resonator. 
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As shown in Figure 4.13, the forward transmission response (S21) of a 38 μm-radius disk 

resonator operating at the 1st contour mode were obtained from a 2-port measurement using the 

test configuration described in section 4.6. This device exhibits a loaded Q factor of 963 and a Rm 

value 11.26 kΩ. As covered in chapter 2, such high Rm values are not ideal for device to circuitry 

integration but this resonator can still be used as a standalone sensor with proper amplification. 

Larger devices such as the ones illustrated in Figure 4.14, suffer from surface deformation 

due to stress-induced buckling. This happens because the suspended membrane is so large that it 

cannot rigidity support itself causing an inward buckling effect due to residual stress. This affects 

the electrical characteristics of the device since its crystal structure is no longer completely aligned 

along its c-axis. As shown in Figure 4.15, the electrical characteristics of a square plate resonator 

operating at the N3 length-extensional mode were extracted using the test configuration discussed 

in section 4.6. It can be observed that the frequency response of this device has a spurious peak 

nearby its resonance frequency as compared to the responses of the smaller disk resonator in Figure 

4.13 due to buckling. The N3 length-extensional mode square plate resonator exhibits a loaded Q 

factor of 401 and an Rm value 1.31 kΩ. The Rm value of this resonator is still too large to be able 

to integrate with CMOS compatible technology and its loaded Q factor is lower than smaller 

devices because of buckled ZnO device layer. 

 

Figure 4.14 SEM images of 150 μm-length extensional ZnO square resonators: (a) n5 and (b) n9. 
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Figure 4.15 Captured forward transmission response demonstrating the effects of ZnO buckling in 

a N3 150μm-length extensional square resonator. 

4.8 Thin-film ZnO-on-Si Resonators 

TPoS resonators are a new emerging high Q factor and frequency-selective resonant 

technology that its overall device performance is comparable to those of capacitive resonators. 

This technology has demonstrated high frequency resonances (up to GHz) with high Q factors 

(>10,000). The biggest advantage of TPoS resonators over other existing resonant technologies is 

the low reported Rm values (As low as few hundred ohms) [52]. As described in section 2.5, this 

due to the high electromechanical coupling of ZnO with low mechanical loss substrates such as 

single crystal Si. This combination allows the acoustic energy to be mostly dissipated within single 

crystal Si. Thus, the electrical and mechanical performance of the device is mostly represented by 

the characteristics of the Si layer. In addition, they share the same microfabrication steps as thin-

film ZnO contour mode resonators as illustrated in Figure 4.3 with just a different release technique 

as described in section 4.5. This allows a high yield and robust production of these devices, which 
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are ideal for building reliable and reproducible mass sensor platforms. In this work, a broad range 

of designs have been fabricated, including disk resonators with radius ranging from 25μm to 150 

μm, square resonators with lengths ranging from 50 μm to 300 μm, and rectangle resonators with 

widths and lengths ranging from 60 μm to 300 μm. 

4.9 TSV Thin-film ZnO-on-Si Resonators  

Through silicon via (TSV) thin-film ZnO contour mode resonators were fabricated as 

illustrated in Figure 4.3 with a 500 nm to 750 nm-thick ZnO films using SOI wafers as the starting 

substrate. As shown in Figure 4.16, the devices were successfully released using the TSV HAR 

DRIE backside dry release technique as illustrated in Figure 4.8. Three SOI substrates with 5 μm, 

10 μm, and 20 μm-thick device layers and similar electrical characteristics were investigated:  

 

Figure 4.16 SEM images of TSV released ZnO-on-Si 1st contour mode disk resonator. 

Even though, TSV HAR DRIE backside dry release is a high yield technique similar to 

DRIE SF6 isotropic dry release, it leaves a rough profile on backside of the Si device layer. This 
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happens because the SiO2 dry etching recipe that is used doesn’t have a high selectivity to SiO2 

and its H2 free radicals also attack Si. Therefore, a time controlled DRIE SiO2 etch is needed in 

order to minimize the damage on the Si device layer that could affect the mechanical performance 

of the resonator. In general, this release technique was the most successful to fabricate ZnO-on-Si 

resonators in this dissertation because once the parameters of TSV HAR DRIE of Si and SiO2 were 

characterized, which it became very reproducible. The only drawback is that the devices need to 

be diced before release, because the DRIE plasma loading effects across a silicon wafer are very 

unpredictable, especially with low etch selective recipes for etching SiO2. In addition, high power 

of recipes such as SiO2 DRIE dry etch, dissipates energy slower on larger Si substrates which leads 

to the tendency of burning photoresist layers.  

 

Figure 4.17 Measured forward transmission frequency response of a wide frequency span of 30 

kHz to 50 MHz from a 1st contour mode 88 μm-radius disk resonator. 

The fabricated devices were tested using the configuration illustrated in section 4.5. As 

seen in Figure 4.17, the designed frequency response of 20MHz from a 1st contour mode 88μm-
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radius disk resonator was the strongest in the wide span between 30 kHz and 50 MHz. The other 

frequency responses are known as harmonic modes or spurious responses. The harmonic modes 

are the responses of other excited resonant modes. Four contour modes can be identified using the 

theoretical approached covered in chapter 2 as demonstrated in Figure 4.17. Also, the 1st contour 

mode has the lowest motional resistance (Rm) value compared to the other exited contour mode 

resonances as seen in Table 4.1.  

Table 4.1 1st Contour Mode 88 μm-radius ZnO-on-Si Disk Design vs. Spurious Responses. 

 

 
 

 

Figure 4.18 Measured forward transmission frequency response of a strong 4th order contour mode 

response from a 1st contour mode 38 μm-radius disk resonator. 
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In order to design an ultrasensitive mass sensor, the harmonic modes can be taken into 

consideration depending upon the design parameters needed to be accomplished. As described 

section 2.10, the sensitivity depends on three parameter fo, Mre, and Q factor. Therefore, the 

intended device needed to have the best sensitivity and resolution regardless of its Rm value then 

the 4th order contour harmonic disk response can be used. As shown in Figure 4.18, smaller disk 

resonators (<50 μm-disk radius) can have very strong harmonic frequency responses with great 

electrical characteristics. 

 In order to be able to correctly predict the frequency response of ZnO-on-Si disk contour 

mode resonators, a direct comparison between theory-predicted and measured responses needs to 

be done. The theoretical approach follows the equations covered in section chapter 2 and the 

measured data was obtained from a set of disk resonators with diameters ranging from 100 μm to 

300 μm. 

 

Figure 4.19 (a) Measured s-parameters from disk resonators diameters ranging from 100 μm to 

300μm; (b) Line graph comparing measured data versus theoretical predictions. 

As illustrated in Figure 4.19(b), the measured frequency responses of smaller disk 

resonators (>150 μm in diameter) follow calculated theoretical values closer. That is because larger 
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disks have more imperfections due to the lossy piezoelectric and/or the device layer. Also, it can 

be observed in Figure 4.19(a) that the insertion loss from the devices becomes smaller as the 

diameter of the resonators gets larger which corresponds to larger Rm values. This happens because 

the larger electrodes and material imperfections introduce mass loading effects in the electrical 

characteristics of the device.  

Plate lateral mode resonators were designed by matching the top electrodes to the FEM 

COMSOL Multiphysics ® rendered maximal displacement areas and strain fields renderings. Due 

the complexity of plate lateral extensional mode shapes (either width-extensional or length-

extensional mode) obtained from the total displacement COMSOL® mode simulation, the strain 

field if often used instead.   

 

Figure 4.20 Top electrode design for a N3 length-extensional mode square plate resonator using 

(a) total displacement; (b) strain field rendering from COMSOL® FEM simulation; and top 

electrode spacing design with (c) λ/16, (d) λ/8, and (e) λ/4 of electrode-to-electrode spacing. 

A novel electrode spacing design following surface acoustic resonator (SAW) interdigital 

transducer (IDT) design concept [53, 54] was performed to match the intended N3 contour 

resonant mode as shown in Figure 4.20. For this design, λ, is the wavelength obtained from the 

equivalent acoustic velocity (Cql) at resonance as shown in equation (2.32). This technique 
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accompanied with total displacement and/or strain field rendering from COMSOL® FEM, which 

is used to minimize the 𝑑31 of ZnO and obtain a stronger frequency response with low motional 

resistance values as demonstrated by equation (4.1). 

 

Figure 4.21 Measured transmission responses of a 200 μm square plate resonator in N3 length-

extensional mode with top electrode spacing design of (a) λ/16; (b) λ/8; and (c) λ/4. 

Figure 4.21 shows that the Rm is lower when the top electrode-to-strain field matching has 

an electrode spacing of λ/8. It can also be observed that in order to reduce the top electrode spacing 

for the three designs as shown in Figure 4.21, the electrode width was reduced thus creating an 

overall smaller electrode. Therefore, the captured s-parameters show that the smaller the electrode 

area is, the higher the resonant frequency. This happens because of the mass loading effects from 

the larger electrodes. 

One more approach to maximize the transduction mechanism of the piezoelectric devices 

is described in Figure 4.22. Here, it can be observed that three designs of top and the bottom 

electrodes used to match the strain field were created. The first design shown in Figure 4.22(a) is 

the most common design used for TPoS resonators, and only the top electrode is designed to match 

the strain field. In Figure 4.22(b), novel design to maximize the surface area is presented while the 
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bottom electrode matches the strain field. This design is intended for devices where 

functionalization technology relies on a large surface metal area such as ELISA [55]. For the third 

design presented in Figure 4.22(c), both the top electrodes and the bottom electrodes were designed 

to match the strain field to maximize the transverse piezoelectric coefficient (𝑑31) of ZnO thin 

film. 

 

Figure 4.22 3D models of three different electrode design created to match the strain field: (a) Top-

electrode matching; (b) bottom electrode matching; and (c) top-and-bottom electrode matching. 

 

Figure 4.23 Measured S-parameters of a 150 μm square resonators in its N3 length-extensional 

mode with three different electrode design created to match the strain field: (a) Top-electrode 

matching; (b) bottom electrode matching; and (c) top-and-bottom electrode matching. 
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The electrode design that best matches the strain field and gives the strongest signal 

transduction is the top-and-bottom electrode matching configuration as seen in Figure 4.23 (c). As 

both the top and the bottom electrodes match the strain field, the lowest motional resistance value 

of 1.01 kΩ is obtained which is almost 1 kΩ lower than the other two designs. The resonant 

frequency is also slightly higher because the combined electrode area from the top and bottom 

electrodes is smaller than the other two designs. One important fact about electrode design as 

shown in Figure 4.23 (b), is that strongest frequency response is no longer happening at N3 width-

extensional mode because the top electrode design is exciting a different resonant mode. However, 

the frequency and electrical characteristics of this mode are still very interesting, especially if the 

targeted mass sensing application needs a large capturing area.  

As illustrated in equation (4.1), the electrode width/length ratio is a very important 

parameter that can be used to design devices with lower Rm values. For this work, a N3 width-

extensional mode was used. Therefore, the width was kept constant at 96 μm, while different length 

values were investigated. According to equation (4.1), the mechanical coupling of a width-

extensional resonator is increased by enlarging the length of the top electrodes. 

 

Figure 4.24 Measured forward transmission frequency responses of a N3 96μm-width extensional 

mode with five different W/L ratios: (a) W/L=1; (b) W/L=0.8; (c) W/L=0.6; (D) W/L=0.4; and (E) 

W/L=0.4. 
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In this work, designs (a)-(e) have been investigated as seen in Figure 4.24. As the length 

of the top electrodes is increased, the Rm value is significantly reduced as shown in Table 4.2. This 

happens because there is a stronger electromechanical coupling between the electrodes and the 

piezoelectric layer. The measured Rm value of 1.46 kΩ from a square plate resonator design with 

a W/L=1 ratio was decreased to 228 Ω using a rectangular plate design with a W/L= 0.2 ratio. The 

resonant frequency was kept around 113 MHz for all the devices because the top electrode design 

was meant for a N3 width-extensional mode response as described in section 4.1. Therefore, by 

increasing the length of the resonator plate body along with the length of the top electrodes only 

affects the electromechanical coupling of the device but not its resonant frequency. This is 

important since it that gives the designer the freedom of only changing the Rm value for impedance 

matching purposes without affecting the designed resonance frequency. However, as a mass sensor, 

this approach has its drawbacks. As shown in equation (2.34), the equivalent mass (Mre) of the 

sensor becomes larger as the area of the resonator is enlarged, which also lowers the sensitivity as 

illustrated in equation (2.42).  

Table 4.2 Frequency Responses of a 96μm-wide Rectangular Plate Resonator Operating in N3 96 

Extensional Mode with Different W/L Ratios. 

 

 

 

Another important technique is to reduce the motional resistance of a resonant device is by 

choosing a higher order contour mode design as illustrated in equations (4.1) and (4.4) [22], 
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𝑅1,𝑁 ≈
𝑅𝑚

𝑛
 (4.4) 

where n=N for even number of top electrodes N (i.e., mode N3 means that it has 3 split top 

electrodes matching a specific mode), and n = (N2-1)/N for odd N.  

This implies that at higher modes, the motional impedance decreases by the number of top 

electrodes needed. In order to investigate this phenomenon, three high-order designs were created. 

The results for higher order-modes N3, N5 and N9 are shown in Figure 4.25. It can be observed 

that for every design, the matched resonant frequency exhibits the lowest Rm value. In addition, a 

40 MHz to 170MHz frequency spectrum presented shows all the excited spurious and harmonic 

modes where width-extensional harmonic modes have been identified. The rest of frequency 

responses are length-extensional and off-plane resonant modes. 

 

Figure 4.25 Measured forward transmission frequency responses for square plate higher order 

mode 150μm-length extensional resonator designs: (a) N3; (b) N5; (c) N9; and (d) SEM images 

of electrode configuration for N3, N5, and N9. 
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As observed in Table 4.3, Rm values as low as 169 Ω can be obtained from the N9 length-

extensional mode. The designs presented in Figure 4.25 did not exceed motional resistance values 

of 228 Ω with loaded Q factors as high 1,500, which makes this technology a strong candidate to 

be a very powerful mass sensor. In addition, great electrical and frequency responses can be 

obtained from harmonic modes such as design N3 with an N9 harmonic as shown in Figure 4.25 

(a). The strong N9 harmonic lateral-extensional mode has a motional resistance value of 714 Ω 

and a loaded Q of 3,010 at 152.04 MHz. In Figure 4.25 (c), a N5 design with an N9 harmonic 

mode has an Rm value of 1.18kΩ and a loaded Q factor of 4,795 at 150.9 MHz. Also, a few 

harmonic modes have been measured with resonant frequencies as high as 776 MHz with loaded 

Q factors of 2,000 as shown in Figure 4.26. The amazing electrical and frequency characteristics 

of the harmonic modes mentioned above are very useful for the development of ultrasensitive 

resonators. 

 

Figure 4.26 Measured transmission frequency response of a strong  29th  150 μm-width extensional 

harmonic response from a N9 design. 
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Table 4.3 Frequency Responses of a 150 μm-length Extensional Square Plate Resonator Designs. 

 
 

 

 

Figure 4.27 (a) Measured forward transmission frequency responses from ZnO-on-Si square plate 

resonators with lengths ranging from 96 μm to 300 μm; (b) Line graph comparing measured data 

versus theoretical approximations. 

In order to be able to correctly predict the frequency response of ZnO-on-Si lateral-

extensional mode resonators, a direct comparison between theory and measured data needs to be 

done. The theoretical approach follows the equations covered in section chapter 2 and the 

measured data was obtained from a set of N3 length-extensional square plate resonators with 

lengths ranging from 96 μm to 300 μm as shown in Figure 4.27 (a). The theoretical approach 

matches the measured values to perfection, making lateral-extensional modes the most reliable 

design, as shown in Figure 4.27 (b). Also, larger devices have smaller Rm values of as seen in 

Figure 4.27 (a), which also agrees with equation (4.1). 
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4.10 Pre-released Thin-film ZnO-on-Polysilicon Resonators  

 The resonators reported in this section are based upon a 750 nm thin-film ZnO on a 6.5 μm 

Polysilicon device layer from a Polysilicon SOI wafer. The microfabrication steps are illustrated 

in Figure 4.3 and the devices were released with the oxide pre-releasing technique illustrated in 

Figure 4.9. The custom-made poly-SOI wafers were fabricated in the nanotechnology research and 

education center (NREC) cleanroom facility at USF. The starting substrate was a high resistivity 

Si wafer to minimize the device cross-talk, also known as the substrate feedthrough. Then, a 5 μm 

PECVD SiO2 was deposited as the sacrificial layer. Finally, a 5 μm LPCVD stress-free 

polycrystalline silicon film is deposited at 580 °C by a LPCVD furnace.  

 

Figure 4.28 SEM top-view and cross-sectional views photos of a 1st contour mode thin-film ZnO-

on-polysilicon contour mode disk resonator after fabrication. 

The devices were successfully released as shown in Figure 4.28, and they were also tested 

using the test set-up configuration described in section 4.6. In Figure 4.30 (a), the results for a 

fundamental 30μm-radius disk contour mode resonator were obtained with Rm value of 12.4 kΩ 

and a loaded Q of 2,895 at 45.69 MHz. As covered in chapter 3, the Rm value is too high to be 

directly integrated with commercially available technology, but the loaded Q factors at resonance 

are comparable to those of ZnO-on-Si devices covered in section 4.9. The motional resistance can 

be decreased by optimizing the polysilicon device layer. As seen in Figure 4.29, the deposited 
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polysilicon exhibits a non-ideal crystal structure according to the XRD and AFM results compared 

to other published work [56]. Also, the polysilicon layer used for these devices was not doped nor 

post-annealed ,and it exhibits s sheet resistance of 1.354-1.748 Ω/□ compared to 0.001 Ω/□ of the 

heavily boron doped SOI device layer. Therefore, it is possible to achieve similar electrical 

responses to ZnO-on-Si devices using home-made Poly-SOI substrates after the polysilicon has 

been properly characterized. 

 

Figure 4.29 (a) XRD and (b) AFM results of the LPCVD polysilicon layer of the home-made poly-

SOI substrate. 

 

Figure 4.30 Measured forward transmission frequency responses for ZnO-on-PolySi 1st contour 

mode disk resonators with different radiuses for: (a) 38 μm-radius disk 1st contour mode; (b) 

frequency response of 1st contour mode disk resonators with different radiuses. 
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Similarly to ZnO-on-Si, ZnO-on-polysilicon length-extensional modes also exhibit smaller 

Rm values compared to disk contour mode resonators. As shown in Figure 4.31, a 60 μm-width 

extensional N3 rectangular shaped resonator exhibits an Rm value of 6.54 kΩ with an unloaded Q 

factor of 1,617 at 252.37 MHz. The temperature coefficient of frequency (TCF) of the devices was 

measured in a temperature range of 25°C to 105°C [57], as shown in Figure 4.32 (b).  

 

Figure 4.31 Measured forward transmission frequency response of a ZnO-on-PolySi 60 μm-width 

extensional N3 rectangular shaped resonator. 

 

Figure 4.32 (a) Measured forward transmission frequency response; and (b) TCF comparison of 

structural layers fabricated in this work using 150 μm-length extensional mode square plate 

resonators. 
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Table 4.4 Device Structural Layer Comparison Using 150 μm-length Extensional Mode Square 

Plate Resonators. 

 

 

 

The measured TCF of -3.77 ppm/°C for ZnO-on-polysilicon resonator is the lowest 

reported value for uncompensated ZnO-on-Substrate resonators up to date. This is due to the high 

temperature needed to deposit this film, which helps its crystal structure and material properties to 

be more stable at temperatures ranging from 25°C to 105°C. Therefore, polysilicon is a good 

alternative to single crystal Si, because the devices’ frequency response and electrical behavior is 

on par with the exception of the motional resistance that can be improved by characterizing the 

polysilicon layer. 

4.11 TPoSCRE Released Thin-film ZnO-on-Si Resonators  

The resonator reported in this section are based upon a 750 nm ZnO thick-film    on a 3-10 

μm single crystal Si device layer of a 4 kΩ Si wafer. The fabrication steps are illustrated in Figure 

3.3 and the TPoSCRE release technique used for these devices is illustrated in Figure 4.10. First, 

a 20 μm HAR DRIE Si etch follow by a 30 nm Al2O3 ALD layer are done to define the device 

layer as shown in Figure 4.33 (c) and (d). The substrate was chosen to be a 4 kΩ-high resistivity 

Si wafer in order to minimize the device cross-talk. The devices were successfully fabricated and 

released as shown in Figure 4.33. This is the first time TPoS resonators are fabricated without 

using SOI wafers. However, still a few parameters need to be addressed to have a higher yield 

such as new releasing process parameters [58]. The fabricated devices exhibit loaded Q factors as 
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high as 919 and Rm values as low as 9.3 kΩ. Figures 4.30 (a) and (b) show that different size 

resonators will have different device layer thicknesses due to the inconsistency of the dry releasing 

process used. 

 

Figure 4.33 SEM cross-sectional view photos of released devices using the TPoSCRE technique: 

(a) 25 μm-radius disk resonator with a (b) device layer of 8 μm and (c) a unreleased rectangle 

resonator with a device layer of 4  μm using the 2 hours of anisotropic DRIE SF6  release dry etch. 

 

Figure 4.34 Measured forward transmission frequency responses TPoSCRE released 1st contour 

disk resonators with a radius of (a) 25 μm and (b) 38 μm. 
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CHAPTER 5 MASS SENSOR DEVELOPMENT 

 After the devices were fabricated and tested as described in chapters 1-4, the electrical and 

frequency characteristics were thereafter extracted. To be able to compete with the most sensitive 

devices ever reported up to date as shown in Table 1.2, a small yet powerful device was selected 

as shown in Figure 5.1. The device was designed using a 1st extensional contour mode ,but as 

described in section 4.9, one of its harmonic modes, the 4th extensional contour mode, exhibited 

remarkable electrical and frequency characteristics as shown in Table 5.1. Using such 

characteristics allows the best possible sensitivity and resolution of TPoS resonators. The device 

selected is composed of a 20 μm low resistivity single crystal structural layer and a 600 nm-thick 

ZnO piezoelectric layer. The top and bottom electrodes are made of platinum and it was pre-

released with the oxide pre-released technique illustrated in Figure 4.9. The device was tested in 

both vacuum and air environments, where the mass sensing characteristics of the maximal and 

minimal displacement areas were extracted and analyzed.  

5.1 Wire-bonding of ZnO-on-Si Resonator for Vacuum Testing 

 To test the device in a vacuum environment, a chip carrier was fabricated and the device 

was wire-bonded to it. The chip carrier was designed by using Advance Design Systems (ADS) 

2012 and the board was milled using a LPKF ProtoMat S62 milling machine. The chip carrier was 

created by using a FR-4 substrate, then SMA connectors were soldered to the terminals to connect 

it to the VNA. Thereafter, the device was wire-bonded to the chip carrier with the use of K&S 

4524 gold ball bonder. Then, it was tested in air using chip-carrier configuration seen in the 

indented picture in Figure 5.1. Both the GSG (on-chip probing) and the wire-bonded (on-carrier 



www.manaraa.com

85 

 

chip) frequency and electrical parameters were extracted. As observed in Figure 5.1, the chip-

carrier introduces parasitic to the overall performance of the device compared to direct GSG on-

wafer probing. For this particular case, the introduced parasitics did not significantly affected the 

overall performance. As seen in Table 5.1, the Rm decreased from 6.5 kΩ to 4.4 kΩ and loaded Q 

factor increased from 5,891 to 6,967 after wire-bonding. As demonstrated in Table 5.2, the chip-

carrier introduced a Cf of 7 fF, but the other electrical parameters were barely affected by this 

change, as the resonant frequency remained the same. 

 

Figure 5.1 Measured frequency responses from GSG on-wafer probing and wire-bonded 

measurements in air. 

Table 5.1 Frequency and Electrical Characteristics in Air of GSG and Wire-bonded Measurements. 

 



www.manaraa.com

86 

 

Table 5.2 Electrical Parameters Extracted from the Measured Devices Through GSG on-Wafer 

Probing and Wire-bonded Approaches. 

 

5.2 Theoretical Sensitivity and LOD Determination  

The device was then tested in vacuum using a test set-up illustrated in Figure 5.2 (a), where 

the frequency and electrical characteristics were measured as shown in Figure 5.2 (b). It can be 

observed that the Rm decreased form 4.4 kΩ to 3 kΩ and the loaded Q factor increased from 6,967 

to 10,638 by operating in vacuum instead of atmospheric environment. 

 

Figure 5.2 Illustration of (a) the vacuum test-set up and the measured forward transmission 

frequency responses (b) the measured resonant frequency and Q factors in air and vacuum. 

Here it can be safely said that the electrical characteristics of this particular device are at 

the very best. As shown in Table 5.3, a theoretical sensitivity of 1.379 Hz fg-1 (1 fg = 10-15g) can 
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be achieved. Also an LOD of 312 ag (1 ag = 10-18g) can be found by equation (2.41) using the 

short term noise and phase angle at resonance as shown in Figure 5.3. This dissertation proves that 

ZnO-on-Si devices are very strong candidates to go for commercialization. 

 

Figure 5.3 Measured zero span spectrum phase noise at the resonance frequency. 

Table 5.3 Theoretical Sensitivity Analysis, and Resonator Performance Parameters in Air and 

Vacuum. 

 

Environment Air Vacuum

f o  (MHz) 85.43 85.43

I.L. (dB) 33.08 29.82

Q L 6,967 10,638

Q UL 7,125 10,993

R m (Ω) 4,411 3,000

M re (g)

Sensitivity (Hz fg-1 )

Δf noise

LOD (g )

R=40μm, 4th Mode

Theoretical Sensitivity 

3.11E-08

1.379

0.43 Hz

3.12E-16
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5.3 FIB Platinum Deposition Characterization  

 A Quanta 200 3D Dual Beam Focus Ion Beam (FIB) equipped with a Gas Injection System 

(GIS) was used to test the sensitivity of the device. As covered in section 2.10, the deposited mass 

needs to be smaller than the estimated equivalent mass (𝑀𝑟𝑒) of 31.1 ng to precisely measure the 

sensitivity of the device. Multiple Platinum/Gallium/Carbon composite micro-pellet depositions 

were performed on gold coated substrates. The FIB was calibrated until repeatable results were 

obtained using a beam current of 10pA to reduce the amount of gallium contamination as shown 

in Figure 5.4 with the parameters listed in Table 5.3. It is important to note that even after a 

thorough calibration, the FIB micro-pellet deposition sizes and shapes tend to vary due to the 

conditions of the FIB chamber.   The micro-pellet depositions were characterized by Atomic Force 

Microscope (AFM) where the mean volume per micro-pellet deposition was found to be 0.665 

μm3 as seen in Figure 5(a). Also, in Table 5.4 an estimated weight per deposition of 7pg is found 

assuming an estimated density of 10.2 g cm-3. By using C5H5Pt(CH3)3 as an organometallic 

precursor, the typical FIB deposition leads to a micro-pellet that consists of C (45%–55%), O (5%), 

Pt (40%–50%), and Ga (5%–7%) [59]. 

 

Figure 5.4 (a) AFM analysis of FIB deposited micro-pellet and (b) SEM image of multiple Pt 

depositions on a gold coated substrate. 
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Table 5.4 FIB Settings for Platinum Deposition. 

 

Table 5.5 Analytic Results for FIB Platinum Deposition. 

 

5.4 Maximal and Minimal Displacement Area Versus Sensitivity Analysis  

 To test the sensitivity of the device two requirements need to be met: First, the added mass 

needs to be smaller than the 𝑀𝑟𝑒 of the resonator. This was accomplished in section 5.3 when the 

FIB micro-pellet deposition was measured to be 7 pg, which is substantially smaller than the 

calculated 𝑀𝑟𝑒 of 31.1 ng as seen in Table 5.2. The second requirement is to precisely deposit the 

micro-pellet on the maximal displacement areas of the resonant mode shape. As illustrated in 

Figure 5.4(b), the maximal displacement areas of a disk device resonating at the 4th order contour 

mode are found near on perimeter of the disk. The depositions need to be placed in this area to 

obtain the best possible sensitivity of the device. As Illustrated in Figure 5.4 (a), four different 

micro-pellet depositions were done on the maximal displacement areas of the device surface. 
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Figure 5.5 (a) SEM photo of Pt FIB deposition on the maximal displacement points; (b) 

COMSOL® FEM simulation of a 4th contour mode response demonstrating the placement of added 

mass at the maximal displacement points. 

 

 

Figure 5.6 Measured forward transmission frequency  responses demonstrating  the frequency shift 

after four FIB Pt deposition on the maximal displacement points in (a) air; (b) high vacuum (>10-

5 Torr); (c) vacuum (~10-3 Torr); (d) plot of Rm versus added mass in high vacuum. 
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The sensitivity of the device was tested in two different environments, including vacuum 

and air using the test-set up illustrated in Figure 5.2(a). Also, two different levels of vacuum were 

investigated as they presented important information needed for packaging. If the device is utilized 

for special sensing application under vacuum where special packaging is required, then a reference 

level of vacuum is needed. 

 

Figure 5.7 (a) SEM photo and (b) modal analysis of Pt FIB deposition micro-pellets at the minimal 

displacement points; (c) measured forward transmission responses demonstrating the frequency 

shift after FIB Pt depositions on the minimal displacement points in high vacuum (>10-5 Torr); (d) 

Rm versus added mass in high vacuum. 

An important factor about these devices is the linearity of the frequency shift and the 

motional resistance in the maximal displacement points. Even though, a small counter balance 
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nonlinear effect can be observed that affects the motional resistance, but the change is very small 

and it tends to stay mostly linear as seen in Figure 5.6(d). A nonlinear behavior of Rm can lead to 

loaded Q-degradation minimizing its sensing capabilities and shorting the life of the sensor. Figure 

5.6(a) shows the mass sensing behavior of the resonator in air with a sensitivity of 1.15 Hz fg-1. 

Figures 5.6(b) and (c) demonstrate the mass sensing behavior of the resonator in two vacuum levels 

yielding the same sensitivity of 1.17 Hz fg-1 and a calculated LOD of 367ag. These values put this 

technology in second place just falling short to the 130ag reported value from a disk capacitive 

disk resonator device as seen in Table 1.2. On the nodal points of the device, it can be observed 

that mass loading is a large contributing factor to loaded Q factor degradation with minimum 

resonance frequency shift. As a consequence, a measured sensitivity of 0.334 Hz fg-1 and a LOD 

of 1,290 ag is obtained in this region. The added mass in this region affects the Rm of the vibrating 

disk reducing significantly the loaded Q factor of the device, thus affecting the sensor’s resolution. 

The nonlinear behavior of Rm, as observed in Figure 5.7 (d), is a direct cause to Q 

degradation minimizing the sensing capabilities and shorting the life of the sensor. Also, the use 

of the entire area indiscriminately can lead to nonlinear results. In Figure 5.7, the effect of mass 

loading on the nodal points are shown. As it can be noticed in Figure 5.7 (c), the frequency shift 

and the insertion loss of the device are nonlinear. Even though, the same micro-pellet deposition 

parameters were used as the maximal points, the Rm sporadically increases. Also, with less than 

35 pg of added mass, the loaded Q factor drops from ~10,000 to merely 6,000 causing Rm to 

increase 1 kΩ for depositions of 5-11 as shown.  

5.5 MOF Functionalized Mass Sensors 

 Metal Organic Frameworks (MOFs) are highly porous crystalline materials known for their 

sponge like ability to capture gas molecules. Their high-surface areas make them ideal 
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functionalizing layers for mass sensors because they have the ability for high gas uptake. Several 

research groups have investigated MOFs as sensor materials for impedimetric gas sensors with 

great results [60]. MOFs can also be engineered to discriminately select specific gas species 

depending on the composition and size of the pores. Also, the design and synthesis, structure 

characterization and porosity, of MOFs have been well documented [61]. 

 

Figure 5.8 3D schematic showing the general characteristics of MOF layers delineating their gas 

absorption mechanisms. 

For this work, in collaboration with Dr. Shengqian Ma’s research group, four porous MOFs 

groups were synthesized as shown in Figure 5.8. Since the fabricated devices are very small (>300 

μm) and the 𝑀𝑟𝑒 of them is in the range of nano-grams, a small MOF crystal or a very thin layer 

needs to be selected. To the best of our knowledge, this is the first work where MOFs are used on 

a ZnO-on-Si resonator as a functionalizing element. Combining MOFs crystals and layers with the 

great sensitivity of ZnO-on-Si resonators, ultrasensitive sensors for gas and biological detection 

can be developed. Taking the advantage of the great absorption and discrimination qualities of 
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MOF crystals and layers, and combining them with the unparalleled sensitivity of ZnO-on-Si 

resonators makes a one of the kind ultrasensitive mass sensor. 

 

Figure 5.9 SEM images of four different MOF crystals synthetized on top to a silicon substrate 

with gold patterns: (a) Zn(BDC); (b) Cu-BTC; (c) Fe-MIL-88b; (d) HKUST-1. 

For this work, HKUST-1 crystals were selected for our preliminary testing because, as 

shown in Figure 5.10 (a) and (b), they have a well-defined crystal structure and no visible size 

variation. The crystals were synthetized on top of Si substrates with gold pads to observe any 

particular growth patterns. As shown in Figure 5.9, all four synthetized MOF layer-crystals do not 

shown any preference to the gold pads. As delineated in section 5.4, a controllable deposition is 

required to be able to achieve the most accurate sensitivity reading of the mass sensor. For this 
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case, a deposition of HKUST-1 crystals on the resonator, in particular on the top electrodes, is 

preferred. 

 

Figure 5.10 (a) SEM and (b) optical images of HKUST-1 crystals showing a well-defined crystal 

structure and visible size variation. 

 For this experiment, a N5 square plate length-extensional resonator was selected due to its 

unparalleled frequency and electrical characteristics as shown in Table 5.5. 

 

 

Figure 5.11 SEM images of (a) wire-bonded device, (b) the same sensor device with FIB micro-

pellets for calibration; and (c) zoom view of it. 
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The sensitivity of this device was obtained by measuring its frequency and electrical 

characteristics under vacuum using the test set-up illustrated in Figure 5.2(a). The sensitivity was 

estimated to be 142 Hz pg-1 and 242 Hz pg-1 for N5 and N9 frequency responses, respectively, as 

seen in Table 5.6. This approximation assumes that the added mass will land exactly on top of the 

maximal displacement area. To know the exact sensitivity of the fabricated device, two FIB micro-

pellet depositions were positioned on the top electrodes of the device. Measuring the change of 

frequency based on the added mass of per deposition, we can extract the sensitivity of the device. 

As shown in Figure 5.13, the average frequency change for the two micro-pellet depositions was 

measured to be 726 Hz and 1,342 Hz for N5 and N9, respectively. Since the same FIB micro-pellet 

deposition parameters were used as shown in Table 5.2, a 7 pg of added mass per deposited micro-

pellet is expected. Therefore, the measured sensitivity of the device is 103 Hz pg-1 and 191 Hz pg-

1 for N5 and N9, respectively. 

 

Figure 5.12 Optical images of the localized placement of HKUST-1 MOF crystals on top of a N5 

width-extensional mode resonator. 

 The next step is to physically land HKUST-1 crystals precisely on top of the device. For 

this work, the crystals were selectively pick and placed on the tip of a micro-manipulator needle. 

Then, the needle was carefully moved towards the device (~20 μm) and then the needle was shake 



www.manaraa.com

97 

 

until the MOF crystal got off and landed on the resonator. As shown in Figure 5.12, a crystal 

cluster was successfully landed on top of the resonator.  

 

Figure 5.13 Measured forward transmission frequency responses of (a) N5 mode and (b) N9 mode 

demonstrating the mass sensing capabilities of a N5 width-extensional mode square plate resonator. 

 Ultimately, the device was tested using the set-up illustrated in Figure 4.11 under high 

vacuum (<10-5 torr). HKUST-1 crystals are known to absorb water molecules in air, but they are 

released out of the HKUST-1 crystals under vacuum. This allows a pure weight measurement of 

the deposited MOF crystals. Using the sensitivity values found for this device, the weight for a 

cluster of three HKUST-1 crystals (5.5 μm by 5 μm combined diameter and height, accordingly, 

as shown in Figure 5.12) was measured to be 24.75 pg and 31.19 pg for N5 and N9 mode resonance 

frequency responses, accordingly. We attribute the two different weight values to the position of 

the HKUST-1 crystals on the device. As observed in Figure 5.12, the HKUST-1 crystals landed 

between two top electrode fingers which is also adjacent to one of the nodal points for N5 mode 

design. Therefore, the sensitivity of the N5 mode resonance response is not optimal and the 

measured weight of the crystal was less than the one obtained from the N9 mode resonant response. 

We believe if MOF crystals would have landed on top of the electrodes the calculated weight for 
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the N5 frequency response would have been closer or equal to that of the N9 mode. However, the 

sensitivity and resolution of the N9 will always be greater because of the higher resonate frequency 

and Q factor. Therefore, it is a better choice to fabricate an ultrasensitive mass sensor. 

Table 5.6 150 μm-width Extensional Mode Mass Sensing Parameters. 
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CHAPTER 6 CONCLUSION AND FUTURE WORK 

MEMS electrostatic and piezoelectric mass sensors are on the brink of a mass sensing 

technology renaissance. As demonstrated in this dissertation, the resonators’ outstanding 

sensitivity is attributed to their unrivaled frequency and electrical responses that can be tailored 

for any mass sensing applications. Also, they are fabricated using standard CMOS compatible 

microfabrication processes and their measured motional resistances could be designed within the 

50-377 Ω range of RF front end devices. Therefore, direct integration with other existing CMOS 

devices is within reach using post-CMOS integration techniques. The unique attributes of these 

devices, as mentioned above, allows the use of technology in numerous of mass sensing 

applications in all fields of science and technology. 

In addition, the economical aspect of this emerging technology is a key to keep further 

investigation. According to Yole, a market research, technology evaluation and strategy consulting 

company, “MEMS will continue to see steady, sustainable double digit growth for the next six 

years: 13 percent CAGR in revenues and 20 per cent CAGR in units. MEMS will grow to $21 

billion market by 2017 [62].” It is very possible for devices such as the ones investigated in this 

dissertation to be part of a $21 billion dollar growing industry. 

6.1  Contributions of this Work 

 This dissertation has covered all the design, simulation, micro-fabrication, testing, and 

implementation aspects of RF MEMS resonators as mass sensors. The devices developed through 

this work have the potential to function as front-end and/or back-end detectors for 

diagnostic/analytical systems. In addition, the microfabrication implemented to create 
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electrostatically and piezoelectrically actuated devices by following standard CMOS foundry 

processes. This unique attributes allows the freedom to design resonators with a large variety of 

sizes and shapes which are very important parameters to determine the sensitivity of the devices. 

Also, size and shape variation allows a good control of the device motional impedance needed to 

directly integrate them to high-level systems using post-CMOS integration techniques. 

 The fabrication of electrostatically actuated devices using novel techniques to reduce the 

motional resistance is implemented, as described in chapter 3. Capacitively-transduced resonators 

use electrostatic actuation via capacitive air-gaps to achieve targeted resonance. The size of those 

gaps determine the motional resistance of the device. Standard contact photolithography 

techniques have resolution limitations which only allows a minimum feature of 1 μm. Therefore, 

to reduce the impedance of the device, capacitive gap reduction techniques need to be implemented. 

In order to do that, two novel techniques were implemented: air-gap reduction via oxidation and 

thin sacrificial layer air-gap reduction fabrication processes.  Air-gap reduction via oxidation yield 

an air-gap size of ~300 nm on a deposited hard mask. In order to transfer that pattern to the 

resonator, a customized DRIE technique was developed and used. Thin sacrificial layer air-gap 

reduction fabrication processes yield air-gap sizes ranging from 250 nm down to 100 nm. 

 In chapter 4, piezoelectrically actuated devices using novel fabrication techniques that 

allows the integration of low-loss coupling substrates with and without SOI wafer technology is 

covered. Thin-film piezoelectric resonators use piezoelectric actuation via coupled electrodes to 

achieve the designed resonance. The size and number of electrodes needed to match the desired 

resonant mode shape determines the motional resistance of the device. To maximize the electrical 

and resonant frequency parameters of these resonators, a low-loss single crystalline Si and 

polysilicon layers are implemented. The Si coupling layer implementation is performed using a 
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high yield Si DRIE TSV release technique while the polysilicon layer is done through an oxide 

pre-releasing technique. Both release techniques are high yield and CMOS compatible. The ZnO-

on-Si resonators demonstrated loaded Q factors and resonant frequencies as high as 7,086 and 

776.54 MHz, and motional resistance values as low as 169Ω in air. These values were achieved 

through an implementation of novel electrode design. Poly-SOI were implemented as a cheaper 

alternative to traditional SOI technology. The Poly-SOI wafers were fabricated in-house and the 

devices demonstrated loaded Q factors as high as ~3,000 and Rm values as low as 6 kΩ with an 

equivalent acoustic velocity of 6,912 ms-1 for a 7 μm thick layer. For this devices, the temperature 

coefficient of frequency of -3.77 ppm/°C was also measured which is the lowest among 

uncompensated TPOS resonators. This is the first time polysilicon has been implemented as a 

structural layer for TPoS resonators and the results are very promising despite that the polysilicon 

layer used was not fully optimized. Finally, TPoSCRE, a novel release technique developed in this 

work to fabricate ZnO-on-Si without the need of expensive SOI technology was implemented. A 

4 kΩ resistive Si substrate was used to fabricate the resonators. Devices demonstrated loaded Q 

factor as high as ~1,000 and motional resistance values as low as 9 kΩ.  

 In addition to the innovation in design and microfabrication, the sensitivity of ZnO-on-Si 

was investigated in chapter 5. This is done to explore the possibilities for TPoS resonant 

technology to be used for mass sensing applications. In order to study the sensitivity of the device, 

both theoretical prediction and measurement methods were taken into account. In this work, to test 

the sensitivity of a 4th contour mode disk resonator, multiple PT micro-pellet depositions using a 

FIB system were made on chosen locations. We demonstrated that the sensitivity of the device for 

added masses at the maximal and minimal displacement points was of 1.17 Hz fg-1 and 0.334 Hz 

fg-1, respectively. Also, the estimated LOD of the resonator was demonstrated to be 367 ag. This 
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is the first time the sensitivity for ZnO-on-Si resonators of this kind has been reported. The LOD 

represents the second lowest measured value up to date from contour mode resonator technology 

as shown in Table 1.2. Also, a N5 lateral-extensional mode resonator was used to measure the 

weight of HKUST-1 MOF cluster of crystal measuring 5.5μm in diameter by 5 μm in height. The 

weight was found to be 24.75 pg and 31.19 pg for N5 mode and N9 mode frequency responses 

accordingly. This opens the possibilities of creating an ultrasensitive functionalized sensor with 

MOF crystals as the highly-selective recognition element. 

6.2 Future Work 

 The demonstrated ultrasensitive ZnO-on-substrate resonators have almost endless number 

of applications in the fields of science and technology. Combining both MOF crystal and ZnO-on-

substrate technology, as demonstrated in this dissertation, opens the possibilities for creating the 

most sensitive gas sensor ever reported. A few steps towards the development of this state-of-the 

art sensors already have been taken as shown in sections 6.2.1 and 6.2.2. 

6.2.1 Ultra-Sensitive Gas Sensor Concept 

 

Figure 6.1 Illustration of ultra-sensitive gas sensor concept: (a) ZnO-on-Si device characterization, 

(b) selective MOF crystal growth on top electrodes and (c) gas absorption test. 
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 Figure 6.1 illustrates the steps needed to successfully fabricate an ultrasensitive gas sensor 

by integrating MOF crystals with ZnO-on-Si technology. It can also be observed that steps 

illustrated in Figure 6.1(a) and (b) have already been demonstrated in this dissertation. The only 

step left to be done is to test the devices in a custom-build gas testing chamber to extrapolate the 

sensitivity of the sensor based on the absorption characteristics of MOF layers towards different 

gasses. 

6.2.2 Ultra-Sensitive Gas Sensor Test-set up Concept 

 

Figure 6.2 Illustration of ultra-sensitive gas sensor concept and test-set up. 

 After the MOF crystals have been properly grown on top of the electrodes of the ZnO-on-

Si resonator, the gas sensitivity can be extracted using the test set-up illustrated in Figure 6.2. The 

two mass flow controllers (MCF 1 and MFC 2) need to have a gas ratio that allows a ppm-ppb 

target gas environment in order to test the limit of gas detection (LOGD) of the sensors. To remove 

the gas molecules form the MOF layer sensor regeneration, both vacuum and heat can be applied 

[63]. This is a great quality of MOFs because that allows the reuse of this sensors (illustrated in 

Figure 6.2). By taking advantage of these two ousting technologies, a one-of the-kind ultrasensitive 

gas sensors can be developed with endless future applications.  
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APPENDIX A 

A.1 Key Fabrication Process Steps 

1) Wafer labeling 

 

2) Wafer cleaning 

1.1) RCA cleaning  

      RCA 1: 5 H2O:NH4OH:H2O2 @ 60°C 

      RCA 2: 5 H2O: HCL:H2O2 @ 60°C 

1.2) Solvent clean 

      Acetone, Methanol, and DI water 

 

3) Photolithography 

1.1) AZ1512 

      Dehydration bake for 5min @ 110°C 

      Spin HDMS for 30 sec @ 3000 RPM 

      Spin photoresist for 30 sec @ 3000 RPM 

      Softbake for 1 min @ 110°C 

                        UV expose for 3.5 sec @ 22mW/cm2 

      Develop for 30 secs in AZ 726 @ 25°C 

1.2) AZ12XT 

      Dehydration bake for 5min @ 110°C 

      Spin HDMS for 30 sec @ 3000 RPM 

      Spin photoresist for 40 sec @ 3500 RPM 

      Softbake for 5 min @ 110°C 

      UV expose for 15 sec @ 22mW/cm2 

      Postbake for 2 min@ 90°C 

      Develop for 60 secs in AZ 300 @ 25°C 

 

4) Deep reactive ion etch (DRIE) 

1.1) High aspect ratio standard silicon (HAR Si)  

      300 sccm SF6 for 3sec, 200 sccm C4H8 for 1.4sec/20 sccm O2 1.4sec @2400W 

      -15°C substrate holder temperature 

      10μm/min Si etch rate 

1.2) Modified high aspect ratio standard silicon (M-HAR Si)  

      300 sccm SF6 for 2sec, 200 sccm C4H8 /20 sccm O2 for 1.4sec @2400W 

      -20°C substrate holder temperature 

      8μm/min Si etch rate 
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1.3) Standard silicon dioxide (SiO2) @2800W 

      13 sccm CH4 /17 sccm C4H8 /150 sccm He  

      -20°C substrate holder temperature 

      200nm/min Si etch rate 

1.4)  ZnO@1800W 

       32 sccm CH4/16 sccm 

       -20°C substrate holder temperature 

       ~0.5μm/min ZnO etch rate 

 

5) Etchback 

Spin HDMS for 30 sec @ 3000 RPM 

Spin AZ12XT for 30 sec @ 1000 RPM and repeat until the devices are planar 

DRIE O2 at 2500W until the top of devices is visible 

 

6) Oxygen descum 

Equipment: PT700 by Plasma Therm, Inc. 

75 watts of RF power 

50 sccm of O2 @ 300mTorr 

 

7) Wet etch 

1.1) 6:1 buffer oxide etch (6:1 BOE) 

           2nm/sec thermal oxide etch rate @ 25°C 

                        49% Hydrofluoric Acid (HF) 

                        ~10μm/min thermal oxide etch rate @ 25°C 

1.2) ZnO 

           100 HCL: H2O 

           10 nm/sec etch rate @ 25°C 

1.3) Au/Cr 

           Gold Etchant TFA solution 

           Chrome Etchant by Aldrich 

           168 nm/min Au etch rate @ 25°C 

           240 nm/min Cr etch rate @ 25°C 

 

8) Gold electroplating 

            Sulfite Gold Plating Solution TSG-250 

            60°C Deposition temperature 

20mA/cm2 of applied current density 

0.5μm/min deposition rate 

 

9) Thin-film deposition 

1.1) ZnO 

            Equipment: AJA 300 Sputter system  

                        100 watts of RF power 

                        6 sccm O2: 6 sccm Ar 

                        5 mTorr deposition pressure 



www.manaraa.com

112 

 

                        2.2μm/hr deposition rate 

                        300°C substrate deposition temperature 

      Annealing treatment for 1 hr at 400°C 

 

1.2) Platinum/ Chrome (Pt/Cr) 

       Equipment: AJA 300 Sputter system 

       100 watts of DC power 

       Ar 12 sccm 

       5 mTorr deposition pressure 

       600nm/hr deposition rate for Pt 

       300nm/hr deposition rate for Cr 

 

1.3) Gold/Chrome (Au/Cr) 

       Equipment AJA ebeam evaporator using 8kV and 2mA beam current 

       5 μTorr deposition pressure 

       400 nm/hr deposition rate for Au 

       1μm/Hr deposition rate for Cr 

 

1.4) ALD Al2O3 

      Equipment: Savannah 100 by Cambridge NanoTech Inc. 

      250°C substrate temperature 

      Flow rate: 20 sccm 

      Recipe: pulse H2O, 0.015 sec 

                   wait 20 sec 

                   pulse TMA, 0.1 sec 

                   wait 20 sec 

                   0.9 Å/cycle deposition rate 

                          



www.manaraa.com

 

 

 

 

 

 

 

ABOUT THE AUTHOR 

Ivan Fernando Rivera received dual M.S. degrees in Electrical and Biomedical/ Chemical 

Engineering in May 2012 from the University of South Florida where he is currently working 

towards a Ph.D. degree in Electrical Engineering under the supervision of Dr. Jing Wang. He is 

part of the RF MEMS Transducers Group (a division of the WAMI Center), Electrical Engineering 

Department, and University of South Florida. His areas of research are RF and MEMS devices. 

His dissertation work focuses mainly on the fabrication and characterization of RF MEMS 

resonators for mass sensing applications. 

 


	University of South Florida
	Scholar Commons
	1-1-2015

	RF MEMS Resonators for Mass Sensing Applications
	Ivan Fernando Rivera
	Scholar Commons Citation


	tmp.1444674487.pdf.uoH12

